armchair graphene nanoribbons
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 92)

H-INDEX

27
(FIVE YEARS 5)

Author(s):  
Lam Thuy Duong Nguyen ◽  
Thi Kim Quyen Nguyen ◽  
Nguyen Huu Hanh Pham ◽  
Dang Khoa Le ◽  
Van Chinh Ngo ◽  
...  

We employed tight-binding calculations and Green’s function formalism to investigate the effect of applied electric fields on the energy band and electronic properties of bilayer armchair graphene nanoribbons (BL-AGNRs). The results show that the perpendicular electric field has a strong impact on modifying and controlling the bandgap of BL-AGNRs. At the critical values of this electric field, distortions of energy dispersion in subbands and the formation of new electronic excitation channels occur strongly. These originate from low-lying energies near the Fermi level and move away from the zero-point with the increment of the electric field. Phase transitions and structural changes clearly happen in these materials. The influence of the parallel electric field is less important in changing the gap size, resulting in the absence of the critical voltage over a very wide range [–1.5 V; 1.5 V] for the semiconductor-insulator group. Nevertheless, it is interesting to note the powerful role of the parallel electric field in modifying the energy band and electronic distribution at each energy level. These results contribute to an overall picture of the physics model and electronic structure of BL-AGNRs under stimuli, which can be a pathway to real applications in the future, particularly for electronic devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3229
Author(s):  
Thi-Nga Do ◽  
Godfrey Gumbs ◽  
Danhong Huang ◽  
Bui D. Hoi ◽  
Po-Hsin Shih

We explore the implementation of specific optical properties of armchair graphene nanoribbons (AGNRs) through edge-defect manipulation. This technique employs the tight-binding model in conjunction with the calculated absorption spectral function. Modification of the edge states gives rise to the diverse electronic structures with striking changes in the band gap and special flat bands at low energy. The optical-absorption spectra exhibit unique excitation peaks, and they strongly depend on the type and period of the edge extension. Remarkably, there exist the unusual transition channels associated with the flat bands for selected edge-modified systems. We discovered the special rule governing how the edge-defect influences the electronic and optical properties in AGNRs. Our theoretical prediction demonstrates an efficient way to manipulate the optical properties of AGNRs. This might be of importance in the search for suitable materials designed to have possible technology applications in nano-optical, plasmonic and optoelectronic devices.


Author(s):  
Thi-Nga Do ◽  
Godfrey Gumbs ◽  
Danhong Huang ◽  
D. Hoi Bui ◽  
Po-Hsin Shih

We explore the implementation of specific optical properties of armchair graphene nanoribbons (AGNRs) through edge-defect manipulation. This technique employs the tight-binding model in conjunction with the calculated absorption spectral function. Modification of the edge states gives rise to the diverse electronic structures with striking changes in the band gap and special flat bands at low energy. The optical-absorption spectra exhibit exotic excitation peaks and they strongly depend on the type and period of the edge extension. Remarkably, there exist the unusual transition channels associated with the flat bands for selected edge-modified systems. We discover the special rule governing how the edge-defect influences the electronic and optical properties in AGNRs. Our theoretical prediction demonstrates an efficient way to manipulate the optical properties of AGNRs. This might be of importance in the search for suitable materials designed to have possible technology applications in nano-optical, plasmonic and optoelectronic devices.


ACS Nano ◽  
2021 ◽  
Author(s):  
Alejandro Berdonces-Layunta ◽  
Fabian Schulz ◽  
Fernando Aguilar-Galindo ◽  
James Lawrence ◽  
Mohammed S. G. Mohammed ◽  
...  

Nano Research ◽  
2021 ◽  
Author(s):  
Yifan Zhang ◽  
Kecheng Cao ◽  
Takeshi Saito ◽  
Hiromichi Kataura ◽  
Hans Kuzmany ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document