allogeneic blood
Recently Published Documents


TOTAL DOCUMENTS

652
(FIVE YEARS 71)

H-INDEX

60
(FIVE YEARS 4)

2021 ◽  
pp. 1-11
Author(s):  
Heiko Lier ◽  
Dietmar Fries

Uncontrolled and massive bleeding with derangement of coagulation is a major challenge in the management of both surgical and seriously injured patients. The underlying mechanism of trauma-induced or -associated coagulopathy is tissue injury in the presence of shock and acidosis provoking endothelial damage, activation of inflammation, and coagulation disbalancing. Furthermore, the combination of ongoing blood loss and consumption of blood components that are essential for effective coagulation worsens uncontrolled hemorrhage. Additionally, therapeutic actions, such as resuscitation with replacement fluids or allogeneic blood products, can further aggravate coagulopathy. Of the coagulation factors essential to the clotting process, fibrinogen is the first to be consumed to critical levels during acute bleeding and current evidence suggests that normalizing fibrinogen levels in bleeding patients improves clot formation and clot strength, thereby controlling hemorrhage. Three different therapeutic approaches are discussed controversially. Whole blood transfusion is used especially in the military scenario and is also becoming more and more popular in the civilian world, although it is accompanied by a strong lack of evidence and severe safety issues. Transfusion of allogeneic blood concentrates in fixed ratios without any targets has been investigated extensively with disappointing results. Individualized and target-controlled coagulation management based on point-of-care diagnostics with respect to the huge heterogeneity of massive bleeding situations is an alternative and advanced approach to managing coagulopathy associated with massive bleeding in the trauma as well as the perioperative setting.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Andreas Winter ◽  
Kai Zacharowski ◽  
Patrick Meybohm ◽  
Andreas Schnitzbauer ◽  
Peter Ruf ◽  
...  

Abstract Background Intraoperative blood salvage (IBS) is regarded as an alternative to allogeneic blood transfusion excluding the risks associated with allogeneic blood. Currently, IBS is generally avoided in tumor surgeries due to concern for potential metastasis caused by residual tumor cells in the erythrocyte concentrate. Methods The feasibility, efficacy and safety aspects of the new developed Catuvab procedure using the bispecific trifunctional antibody Catumaxomab was investigated in an ex-vivo pilot study in order to remove residual EpCAM positive tumor cells from the autologous erythrocyte concentrates (EC) from various cancer patients, generated by a IBS device. Results Tumor cells in intraoperative blood were detected in 10 of 16 patient samples in the range of 69–2.6 × 105 but no residual malignant cells in the final erythrocyte concentrates after Catuvab procedure. IL-6 and IL-8 as pro-inflammatory cytokines released during surgery, were lowered in mean 28-fold and 52-fold during the Catuvab procedure, respectively, whereas Catumaxomab antibody was detected in 8 of 16 of the final EC products at a considerable decreased and uncritical residual amount (37 ng in mean). Conclusion The preliminary study results indicate efficacy and feasibility of the new medical device Catuvab allowing potentially the reinfusion of autologous erythrocyte concentrates (EC) produced by IBS device during oncological high blood loss surgery. An open-label, multicenter clinical study on the removal of EpCAM-positive tumor cells from blood collected during tumor surgery using the Catuvab device is initiated to validate these encouraging results.


Sign in / Sign up

Export Citation Format

Share Document