scholarly journals Emergency Blood Transfusion for Trauma and Perioperative Resuscitation: Standard of Care

2021 ◽  
pp. 1-11
Author(s):  
Heiko Lier ◽  
Dietmar Fries

Uncontrolled and massive bleeding with derangement of coagulation is a major challenge in the management of both surgical and seriously injured patients. The underlying mechanism of trauma-induced or -associated coagulopathy is tissue injury in the presence of shock and acidosis provoking endothelial damage, activation of inflammation, and coagulation disbalancing. Furthermore, the combination of ongoing blood loss and consumption of blood components that are essential for effective coagulation worsens uncontrolled hemorrhage. Additionally, therapeutic actions, such as resuscitation with replacement fluids or allogeneic blood products, can further aggravate coagulopathy. Of the coagulation factors essential to the clotting process, fibrinogen is the first to be consumed to critical levels during acute bleeding and current evidence suggests that normalizing fibrinogen levels in bleeding patients improves clot formation and clot strength, thereby controlling hemorrhage. Three different therapeutic approaches are discussed controversially. Whole blood transfusion is used especially in the military scenario and is also becoming more and more popular in the civilian world, although it is accompanied by a strong lack of evidence and severe safety issues. Transfusion of allogeneic blood concentrates in fixed ratios without any targets has been investigated extensively with disappointing results. Individualized and target-controlled coagulation management based on point-of-care diagnostics with respect to the huge heterogeneity of massive bleeding situations is an alternative and advanced approach to managing coagulopathy associated with massive bleeding in the trauma as well as the perioperative setting.

2017 ◽  
Vol 43 (04) ◽  
pp. 367-374 ◽  
Author(s):  
Philipp Stein ◽  
Alexander Kaserer ◽  
Gabriela Spahn ◽  
Donat Spahn

AbstractTrauma remains one of the major causes of death and disability all over the world. Uncontrolled blood loss and trauma-induced coagulopathy represent preventable causes of trauma-related morbidity and mortality. Treatment may consist of allogeneic blood product transfusion at a fixed ratio or in an individualized goal-directed way based on point-of-care (POC) and routine laboratory measurements. Viscoelastic POC measurement of the developing clot in whole blood and POC platelet function testing allow rapid and tailored coagulation and transfusion treatment based on goal-directed, factor concentrate–based algorithms. The first studies have been published showing that this concept reduces the need for allogeneic blood transfusion and improves outcome. This review highlights the concept of goal-directed POC coagulation management in trauma patients, introduces a selection of POC devices, and presents algorithms which allow a reduction in allogeneic blood product transfusion and an improvement of trauma patient outcome.


2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Stefan Hofer ◽  
Christoph J. Schlimp ◽  
Sebastian Casu ◽  
Elisavet Grouzi

Early recognition of coagulopathy is necessary for its prompt correction and successful management. Novel approaches, such as point-of-care testing (POC) and administration of coagulation factor concentrates (CFCs), aim to tailor the haemostatic therapy to each patient and thus reduce the risks of over- or under-transfusion. CFCs are an effective alternative to ratio-based transfusion therapies for the correction of different types of coagulopathies. In case of major bleeding or urgent surgery in patients treated with vitamin K antagonist anticoagulants, prothrombin complex concentrate (PCC) can effectively reverse the effects of the anticoagulant drug. Evidence for PCC effectiveness in the treatment of direct oral anticoagulants-associated bleeding is also increasing and PCC is recommended in guidelines as an alternative to specific reversal agents. In trauma-induced coagulopathy, fibrinogen concentrate is the preferred first-line treatment for hypofibrinogenaemia. Goal-directed coagulation management algorithms based on POC results provide guidance on how to adjust the treatment to the needs of the patient. When POC is not available, concentrate-based management can be guided by other parameters, such as blood gas analysis, thus providing an important alternative. Overall, tailored haemostatic therapies offer a more targeted approach to increase the concentration of coagulation factors in bleeding patients than traditional transfusion protocols.


2021 ◽  
Vol 47 (02) ◽  
pp. 120-128
Author(s):  
Christina Caruso ◽  
Wilbur A. Lam

AbstractHemostasis is a complex wound-healing process involving numerous mechanical and biochemical mechanisms and influenced by many factors including platelets, coagulation factors, and endothelial components. Slight alterations in these mechanisms can lead to either prothrombotic or bleeding consequences, and such hemostatic imbalances can lead to significant clinical consequences with resultant morbidity and mortality. An ideal hemostasis assay would not only address all the unique processes involved in clot formation and resolution but also take place under flow conditions to account for endothelial involvement. Global assays do exist; however, these assays are not flow based. Flow-based assays have been limited secondary to their large blood volume requirements and low throughput, limiting potential clinical applications. Microfluidic-based assays address the aforementioned limitations of both global and flow-based assays by utilizing standardized devices that require low blood volumes, offer reproducible analysis, and have functionality under a range of shear stresses and flow conditions. While still largely confined to the preclinical space, here we aim to discuss these novel technologies and potential clinical implications, particularly in comparison to the current, commercially available point-of-care assays.


Sign in / Sign up

Export Citation Format

Share Document