scholarly journals State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 888
Author(s):  
Mingliang Chen ◽  
Sebastiaan G. J. Heijman ◽  
Luuk C. Rietveld

Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Nur Fatihah Zulkefli ◽  
Nur Hashimah Alias ◽  
Nur Shafiqah Jamaluddin ◽  
Norfadhilatuladha Abdullah ◽  
Shareena Fairuz Abdul Manaf ◽  
...  

The discharge of massive amounts of oily wastewater has become one of the major concerns among the scientific community. Membrane filtration has been one of the most used methods of treating oily wastewater due to its stability, convenience handling, and durability. However, the continuous occurrence of membrane fouling aggravates the membrane’s performance efficiency. Membrane fouling can be defined as the accumulation of various materials in the pores or surface of the membrane that affect the permeate’s quantity and quality. Many aspects of fouling have been reviewed, but recent methods for fouling reduction in oily wastewater have not been explored and discussed sufficiently. This review highlights the mitigation strategies to reduce membrane fouling from oily wastewater. We first review the membrane technology principle for oily wastewater treatment, followed by a discussion on different fouling mechanisms of inorganic fouling, organic fouling, biological fouling, and colloidal fouling for better understanding and prevention of membrane fouling. Recent mitigation strategies to reduce fouling caused by oily wastewater treatment are also discussed.


2021 ◽  
Vol 9 (1) ◽  
pp. 104975
Author(s):  
Saber Abdulhamid Alftessi ◽  
Mohd. Hafiz Dzarfan Othman ◽  
Mohd. Ridhwan Adam ◽  
Twibi Mohamed Farag ◽  
Ahmad Fauzi Ismail ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 750 ◽  
Author(s):  
Ahmad ◽  
Kim ◽  
Kim ◽  
Kim

A high-performance photocatalytic ceramic membrane was developed by direct growth of a TiO2 structure on a macroporous alumina support using a hydrothermal method. The morphological nanostructure of TiO2 on the support was successfully controlled via the interaction between the TiO2 precursor and a capping agent, diethylene glycol (DEG). The growth of anatase TiO2 nanorods was observed both on the membrane surface and pore walls. The well-organized nanorods TiO2 reduced the perturbation of the alumina support, thus controlling the hydrolysis rate of the TiO2 precursor and reducing membrane fouling. However, a decrease in the amount of the DEG capping agent significantly reduced membrane permeability, owing to the formation of nonporous clusters of TiO2 on the support. Distribution of the organized TiO2 nanorods on the support was very effective for the improvement of the organic removal efficiency and antifouling under ultraviolet illumination. The TiO2 nanostructure associated with the reactive crystalline phase, rather than the amount of layered TiO2 formed on the support, which was found to be the key to controlling photocatalytic membrane reactivity. These experimental findings would provide a new approach for the development of efficacious photocatalytic membranes with improved performance for wastewater treatment.


2014 ◽  
Vol 955-959 ◽  
pp. 502-505
Author(s):  
Ji Ku Zhang ◽  
Yang Yu ◽  
Xue Ning Liu ◽  
Wei Tan

Membrane separation technique has a beneficial effect when applied to remove dispersed oil,emulsified oil and dissolved oil,the removal rate is more than 95%,meanwhile there is no secondary pollution, and separation process is without phase transformation, at the same time the membrane module structure is simple,and it has a short process,meanwhile the equipment also consumes low energy[1]. We use flat ceramic membrane filtering device adding coagulant to dispose oily wastewater.To choosing coagulant,we do an experiment in motionless beaker with FeCl3,PAC,PAM and two combinations of them to investigate the effect of oily wastewater treatment.Meanwhile,to provide a scientific basis for oily wastewater,we perform univariate analysis on optimal pharmacy to gain the most suitable technological parameters of oily wastewater treatment.


2020 ◽  
Vol 169 ◽  
pp. 115180 ◽  
Author(s):  
Mingliang Chen ◽  
Li Zhu ◽  
Jingwen Chen ◽  
Fenglin Yang ◽  
Chuyang Y. Tang ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 12-23
Author(s):  
M.E. Ossman ◽  
◽  
W. Wagdy ◽  
K.Y. Nabat ◽  
A. Bramoo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document