grade 92 steel
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Manabu TAMURA

Creep curves of Grade 91 and 92 steels were analyzed by applying an exponential law to the temperature, stress, and time parameters to investigate the formation process of the Z-phase, which lowers the long-term rupture strength of high-Cr martensitic steel. The activation energy (Q ), activation volume (V ), and Larson–Miller constant (C ) were obtained as functions of creep strain. At the beginning of creep, sub-grain boundary strengthening occurs because of dislocations that are swept out of the sub-grains, and this is followed by strengthening owing to the rearrangement of M23C6 and the precipitation of the Laves phase. Heterogeneous recovery and subsequent heterogeneous deformation start at an early stage of transient creep near several of the weakest boundaries because of the coarsening of the precipitates; this results in the simultaneous decreases in Q , V , and C  even in transient creep. Further, this activity triggers an unexpected degradation in strength because of the accelerated formation of the Z-phase even in transient creep. The stabilization of M23C6 and the Laves phase is important to mitigate the degradation of the long-term rupture strength of high-strength martensitic steel. The stabilization of the Laves phase is especially important for Cr-Mo systems because Fe2Mo is easily coarsened at approximately 600 °C compared to Fe2W in Grade 92 steel.



Author(s):  
Nasrul Azuan Alang ◽  
Lei Zhao ◽  
Kamran Nikbin

Conventional strain-based numerical prediction assumes that failure occurs when ductility is exhausted or accumulation of creep strain reaches the critical failure strain. Due to instability at the onset of rupture, the failure strain value appears to be scattered and leads to the erroneousness in prediction. In this paper, a new local constraint-based damage model incorporating the Monkman–Grant ductility, as a measure of strain during uniform creep deformation stage, was implemented into a Finite Element (FE) model to predict the creep damage and rupture of Grade 92 steel under uniaxial and multiaxial stress states. The prediction was applied on plain and notched bar specimens with various notch acuities. The uniaxial stress-dependent Monkman–Grant (MG) failure strain was adopted in the FE to simulate the influence of the constraints which were induced by the creep damage. The implication of reduced failure strain in long-term creep time on the rupture prediction is discussed. The multiaxial MG failure strain of the notched bar, which has a lower value than uniaxial failure strain due to the geometrical constraint, was estimated based on the linear inverse relationship between normalised MG failure strain and normalised triaxiality factor. It was found that the results obtained from the proposed technique were in good agreement with the experimental data within the scatter band of ± factor of 2. It was shown that MG failure strain can be used as an alternative to strain at fracture. MG strain outweighed strain at fracture because the determination of its value only required short-term testing to be performed. In most cases considered in the present investigation, the rupture-type fracture was predicted, however, there was evidence that under high constraint and low stress, stable crack propagation occurred before fracture. The location of the maximum creep damage was found to be dependent on the creep time, geometry or acuity level of the specimen. For sharp notch specimen, the failure was initiated near the notch root, however, as the notch radius increased, the initiation location moved further away towards the specimen centre.





2020 ◽  
Vol 142 (6) ◽  
Author(s):  
K. Maruyama ◽  
N. Sekido ◽  
K. Yoshimi ◽  
Y. Yamamoto

Abstract Grade 91 steel is widely used as steam pipes in ultrasupercritical (USC) steam boilers. In residual creep life assessment of the pipes by calculation, one needs creep rupture life of the steel as a function of stress and temperature in a time range longer than 105 h. Four regions with different creep rupture characteristics appear in a stress versus creep rupture life diagram of the steel. Main steam pipes made of the steel are used in a long-term region with low values of stress exponent and activation energy for creep rupture life (referred to as region G in this paper). Creep rupture lives of the steel in this region vary from heat to heat depending on their prior austenite grain size. This paper proposes a grain size-dependent equation representing creep rupture life of the steel in region G. The equation is verified with creep rupture data up to 232,833 h at 600 °C. Region G is absent in some heats with a large grain size. The equation can rationalize the absence in the heats. In a stress versus creep rupture life diagram of grade 92 steel, there is the same long-term region G. In the region, a creep rupture life of each heat is dependent on its grain size as is the case in grade 91 steel. The proposed equation accords well with the creep rupture lives of the grade 92 steel in region G.



2019 ◽  
Vol 14 ◽  
pp. 410-415
Author(s):  
Ashish Vaidya ◽  
Atul Ballal ◽  
Hari Krishan Yadav ◽  
Dilip Peshwe


2018 ◽  
Author(s):  
Haixuan XU ◽  
Lizhan Tan ◽  
Kumar Sridharan ◽  
Li He


2018 ◽  
Author(s):  
Haixuan Xu ◽  
Lizhen Tan ◽  
Li He ◽  
Kumar Sridharan




Sign in / Sign up

Export Citation Format

Share Document