porous silver
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hang Zhao ◽  
Xuexiang Li ◽  
Liang Zhang ◽  
Zhihui Hu ◽  
Lvling Zhong ◽  
...  

AbstractMicrobial contamination in drinking water has become an important threat to human health. There is thus an urgent need to develop antibacterial materials to treat drinking water. Here, porous silver-loaded biochar (C–Ag) was prepared using corn straw as the substrate and silver as the antibacterial agent. C–Ag was then uniformly distributed in polyvinyl alcohol gel beads of eluted calcium carbonate to prepare p-PVA/C–Ag antibacterial composite. The polymer composites were tested by FT-IR, XRD, SEM and TG-DSC. The results showed that C–Ag was more evenly distributed in the PVA gel spheres. Antibacterial experiments showed that p-PVA/C–Ag greatly inhibited Escherichia coli. Practical application tests revealed that p-PVA/C–Ag showed high and sustained bactericidal inhibition and reusability. Generally, p-PVA/C–Ag composite shows high potential to be applied to drinking water treatment.


2021 ◽  
Author(s):  
Zishuai Zhang ◽  
Eric W. Lees ◽  
Faezeh Habibzadeh ◽  
Danielle A. Salvatore ◽  
Shaoxuan Ren ◽  
...  

<p>We demonstrate here that a porous free-standing silver foam cathode in an electrolytic flow electrolyzer mediates efficient electrolysis of 3.0 M bicarbonate solutions into CO. These results have direct implications for carbon capture schemes where OH- solutions react with CO2 to form bicarbonate-rich solutions that need to be treated to recycle the sorbent and recover the CO2. Our study shows a viable path for replacing the high-temperature thermal process currently used to recover CO2 from these carbon</p><p>capture solutions by using electricity to drive the conversion of bicarbonate into CO2 and subsequently into CO. The use of free-standing porous silver electrodes was found to yield electrolysis performance parameters (e.g., a Faradaic efficiency for CO production, FECO, of 95% at 100 mA cm2; <3% performance loss after 80 h operation) that are superior to results obtained in bicarbonate electrolyzers that utilize conventional carbon-based gas diffusion electrodes (GDEs) designed for gaseous CO2 fed electrolyzers. This liquid-fed bicarbonate electrolyzer achieves high CO formation rates with the added benefit of not requiring an energy-intensive CO2 regeneration step that would be necessary for the electrolysis of gaseous CO2. These findings represent a potentially important step in closing the carbon cycle.</p>


2021 ◽  
Author(s):  
Zishuai Zhang ◽  
Eric W. Lees ◽  
Faezeh Habibzadeh ◽  
Danielle A. Salvatore ◽  
Shaoxuan Ren ◽  
...  

<p>We demonstrate here that a porous free-standing silver foam cathode in an electrolytic flow electrolyzer mediates efficient electrolysis of 3.0 M bicarbonate solutions into CO. These results have direct implications for carbon capture schemes where OH- solutions react with CO2 to form bicarbonate-rich solutions that need to be treated to recycle the sorbent and recover the CO2. Our study shows a viable path for replacing the high-temperature thermal process currently used to recover CO2 from these carbon</p><p>capture solutions by using electricity to drive the conversion of bicarbonate into CO2 and subsequently into CO. The use of free-standing porous silver electrodes was found to yield electrolysis performance parameters (e.g., a Faradaic efficiency for CO production, FECO, of 95% at 100 mA cm2; <3% performance loss after 80 h operation) that are superior to results obtained in bicarbonate electrolyzers that utilize conventional carbon-based gas diffusion electrodes (GDEs) designed for gaseous CO2 fed electrolyzers. This liquid-fed bicarbonate electrolyzer achieves high CO formation rates with the added benefit of not requiring an energy-intensive CO2 regeneration step that would be necessary for the electrolysis of gaseous CO2. These findings represent a potentially important step in closing the carbon cycle.</p>


2021 ◽  
Vol 1838 (1) ◽  
pp. 012030
Author(s):  
Bo Ban ◽  
Mingyu Li ◽  
Qingxuan Zeng

2021 ◽  
Vol 60 (3) ◽  
pp. 1523-1532
Author(s):  
Qing-Shi Wu ◽  
Fahime Bigdeli ◽  
Farzaneh Rouhani ◽  
Xue-Mei Gao ◽  
Hamed Kaviani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document