quenching mechanisms
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 28)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Alan Hoskinson ◽  
Wilson Terry Rawlins ◽  
Kristin L Galbally-Kinney ◽  
Emily Gong ◽  
Jeff A Hopwood

Abstract We have used arrays of microwave-generated microplasmas operating at atmospheric pressure to generate high concentrations of singlet molecular oxygen, O2(1Δg), which is of interest for biomedical applications. The discharge is sustained by a pair of microstrip-based microwave resonator arrays which force helium/oxygen gas mixtures through a narrow plasma channel. We have demonstrated the efficacy of both NO and less-hazardous N2O additives for suppression of ozone and associated enhancement of the O2(1Δg) yield. Quenching of O2(1Δg) by ozone is sufficiently suppressed such that quenching by ground state molecular oxygen becomes the dominant loss mechanism in the post-discharge outflow. We verified the absence of other significant gas-phase quenching mechanisms by measuring the O2(1Δg) decay along a quartz flow tube. These measurements indicated a first-order rate constant of (1.2 ± 0.3) × 10-24 m3 s−1, slightly slower than but consistent with prior measurements of singlet oxygen quenching on ground state oxygen. The discharge-initiated reaction mechanisms and data analysis are discussed in terms of a chemical kinetics model of the system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Edoardo Cignoni ◽  
Margherita Lapillo ◽  
Lorenzo Cupellini ◽  
Silvia Acosta-Gutiérrez ◽  
Francesco Luigi Gervasio ◽  
...  

AbstractLight-harvesting complexes of plants exert a dual function of light-harvesting (LH) and photoprotection through processes collectively called nonphotochemical quenching (NPQ). While LH processes are relatively well characterized, those involved in NPQ are less understood. Here, we characterize the quenching mechanisms of CP29, a minor LHC of plants, through the integration of two complementary enhanced-sampling techniques, dimensionality reduction schemes, electronic calculations and the analysis of cryo-EM data in the light of the predicted conformational ensemble. Our study reveals that the switch between LH and quenching state is more complex than previously thought. Several conformations of the lumenal side of the protein occur and differently affect the pigments’ relative geometries and interactions. Moreover, we show that a quenching mechanism localized on a single chlorophyll-carotenoid pair is not sufficient but many chlorophylls are simultaneously involved. In such a diffuse mechanism, short-range interactions between each carotenoid and different chlorophylls combined with a protein-mediated tuning of the carotenoid excitation energies have to be considered in addition to the commonly suggested Coulomb interactions.


2021 ◽  
Vol 13 (21) ◽  
pp. 11896
Author(s):  
Evie L. Papadopoulou ◽  
Giulia Biffi ◽  
Anitha Senthamizhan ◽  
Beatriz Martín-García ◽  
Riccardo Carzino ◽  
...  

A paper sensor was designed in order to detect the presence of nanomaterials, such as ZnO and silica nanoparticles, as well as graphene nanoplatelets (GnP), based on fluorescence changes of carbon nanodots. Paper strips were functionalized with carbon nanodots using polyvinyl alcohol (PVA) as binder. The carbon nanodots were highly fluorescent and, hence, rendered the (cellulosic) paper stripes emissive. In the presence of silica and ZnO nanoparticles, the fluorescence emission of the carbon nanodots was quenched and the emission decay was shortened, whereas in the presence of GnP only emission quenching occurred. These different photoluminescence (PL) quenching mechanisms, which are evident from lifetime measurements, convey selectivity to the sensor. The change in fluorescence of the carbon dot-functionalized paper is also evident to the naked eye under illumination with a UV lamp, which enables easy detection of the nanomaterials. The sensor was able to detect the nanomaterials upon direct contact, either by dipping it in their aqueous dispersions, or by sweeping it over their powders. The use of the proposed optical sensor permits the detection of nanomaterials in a straightforward manner, opening new ways for the development of optical sensors for practical applications.


Author(s):  
Janneke Ravensbergen ◽  
Smitha Pillai ◽  
Dalvin D. Méndez-Hernández ◽  
Raoul N. Frese ◽  
Rienk van Grondelle ◽  
...  

2021 ◽  
Author(s):  
Liying Ren ◽  
Xue-Chun Fang ◽  
Feng-Qiang Wang ◽  
Tongmou Geng

Abstract Two tetraphenylethylene-based fluorescent conjugated microporous polymers (TTTPT and TTDAT) were obtained by the Friedel−Crafts polymerization reactions catalyzed by CH3SO3H. In virtue of containing tetraphenylethylene, triphenylamine and s-triazine units in their porous skeletons, the resulting TTTPT and TTDAT show excellent fluorescence sensing performance for trinitrophenol with high quenching coefficients of 9.13×103 and 1.31×105 L mol-1, respectively. TTDAT can also sense to dinitrophenol with the Ksv of 2.70×104 L mol-1. The fluorescent quenching mechanisms of TTTPT and TTDAT for selective detecting TNP attribute to conventional photoinduced electron-transfer mechanism and/or the resonant energy transfer mechanism.


Author(s):  
Arvin Sain Tanwar ◽  
Retwik Parui ◽  
Rabindranath Garai ◽  
Moirangthem Anita Chanu ◽  
Parameswar Krishnan Iyer

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sunkyu Yu ◽  
Xianji Piao ◽  
Namkyoo Park

Abstract The concept of topology is universally observed in various physical objects when the objects can be described by geometric structures. Although a representative example is the knotted geometry of wavefunctions in reciprocal space for quantum Hall family and topological insulators, topological states have also been defined for other physical quantities, such as topologically distinct Fermi surfaces and enhanced lattice degrees of freedom in hyperbolic geometry. Here, we investigate a different class of topological states – topological geometry of dynamical state trajectories – in non-Hermitian and nonlinear optical dynamics, revealing topologically protected oscillation quenching mechanisms determined by parity–time (PT) symmetry. For coupled systems composed of nonlinear gain and loss elements, we classify the topology of equilibria separately for unbroken and broken PT symmetry, which result in distinct oscillation quenching mechanisms: amplitude death and oscillation death. We then show that these PT-symmetric quenching mechanisms lead to immunity against temporal perturbations, enabling the applications of topologically protected laser modulation and rectification. The observed connection between the topological geometry of dynamical states, oscillation quenching phenomena in dynamical systems theory, and PT symmetry provides a powerful toolkit for noise-immune signal processing.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1868
Author(s):  
Sang-Kee Choi ◽  
Jonghoon Kim ◽  
Eunha Kim

Various bioorthogonal chemistries have been used for fluorescent imaging owing to the advantageous reactions they employ. Recent advances in bioorthogonal chemistry have revolutionized labeling strategies for fluorescence imaging, with inverse electron demand Diels–Alder (iEDDA) reactions in particular attracting recent attention owing to their fast kinetics and excellent specificity. One of the most interesting features of the iEDDA labeling strategy is that tetrazine-functionalized dyes are known to act as fluorogenic probes. In this review, we will focus on the synthesis, molecular-design strategies, and bioimaging applications of tetrazine-functionalized fluorogenic probes. Traditional Pinner reaction and “Pinner-like” reactions for tetrazine synthesis are discussed here, as well as metal-catalyzed C–C bond formations with convenient tetrazine intermediates and the fabrication of tetrazine-conjugated fluorophores. In addition, four different quenching mechanisms for tetrazine-modified fluorophores are presented.


Author(s):  
Giacomo Fanciullo ◽  
Irene Conti ◽  
Pascal Didier ◽  
Andrey S Klymchenko ◽  
Jérémie Léonard ◽  
...  

The exciton density dynamics recorded in time-resolved spectroscopic measurements is a useful tool to recover information on energy transfer (ET) processes that can occur at different timescales, up to the...


Sign in / Sign up

Export Citation Format

Share Document