error density
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2329
Author(s):  
Abdullah Al-Boghdady ◽  
Khaled Wassif ◽  
Mohammad El-Ramly

Internet of Things Operating Systems (IoT OSs) run, manage and control IoT devices. Therefore, it is important to secure the source code for IoT OSs, especially if they are deployed on devices used for human care and safety. In this paper, we report the results of our investigations of the security status and the presence of security vulnerabilities in the source code of the most popular open source IoT OSs. Through this research, three Static Analysis Tools (Cppcheck, Flawfinder and RATS) were used to examine the code of sixteen different releases of four different C/C++ IoT OSs, with 48 examinations, regarding the presence of vulnerabilities from the Common Weakness Enumeration (CWE). The examination reveals that IoT OS code still suffers from errors that lead to security vulnerabilities and increase the opportunity of security breaches. The total number of errors in IoT OSs is increasing from version to the next, while error density, i.e., errors per 1K of physical Source Lines of Code (SLOC) is decreasing chronologically for all IoT Oss, with few exceptions. The most prevalent vulnerabilities in IoT OS source code were CWE-561, CWE-398 and CWE-563 according to Cppcheck, (CWE-119!/CWE-120), CWE-120 and CWE-126 according to Flawfinder, and CWE-119, CWE-120 and CWE-134 according to RATS. Additionally, the CodeScene tool was used to investigate the development of the evolutionary properties of IoT OSs and the relationship between them and the presence of IoT OS vulnerabilities. CodeScene reveals strong positive correlation between the total number of security errors within IoT OSs and SLOC, as well as strong negative correlation between the total number of security errors and Code Health. CodeScene also indicates strong positive correlation between security error density (errors per 1K SLOC) and the presence of hotspots (frequency of code changes and code complexity), as well as strong negative correlation between security error density and the Qualitative Team Experience, which is a measure of the experience of the IoT OS developers.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Han Lin Shang ◽  
Xibin Zhang

AbstractThis paper presents a Bayesian sampling approach to bandwidth estimation for the local linear estimator of the regression function in a nonparametric regression model. In the Bayesian sampling approach, the error density is approximated by a location-mixture density of Gaussian densities with means the individual errors and variance a constant parameter. This mixture density has the form of a kernel density estimator of errors and is referred to as the kernel-form error density (c.f. Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34.). While (Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34) use the local constant (also known as the Nadaraya-Watson) estimator to estimate the regression function, we extend this to the local linear estimator, which produces more accurate estimation. The proposed investigation is motivated by the lack of data-driven methods for simultaneously choosing bandwidths in the local linear estimator of the regression function and kernel-form error density. Treating bandwidths as parameters, we derive an approximate (pseudo) likelihood and a posterior. A simulation study shows that the proposed bandwidth estimation outperforms the rule-of-thumb and cross-validation methods under the criterion of integrated squared errors. The proposed bandwidth estimation method is validated through a nonparametric regression model involving firm ownership concentration, and a model involving state-price density estimation.


2020 ◽  
pp. 1-30 ◽  
Author(s):  
Hao Dong ◽  
Taisuke Otsu ◽  
Luke Taylor

Abstract In this paper, we derive the asymptotic properties of the density-weighted average derivative estimator when a regressor is contaminated with classical measurement error and the density of this error must be estimated. Average derivatives of conditional mean functions are used extensively in economics and statistics, most notably in semiparametric index models. As well as ordinary smooth measurement error, we provide results for supersmooth error distributions. This is a particularly important class of error distribution as it includes the Gaussian density. We show that under either type of measurement error, despite using nonparametric deconvolution techniques and an estimated error characteristic function, we are able to achieve a $\sqrt {n}$ -rate of convergence for the average derivative estimator. Interestingly, if the measurement error density is symmetric, the asymptotic variance of the average derivative estimator is the same irrespective of whether the error density is estimated or not. The promising finite sample performance of the estimator is shown through a Monte Carlo simulation.


2020 ◽  
Vol 37 (9) ◽  
pp. 3209-3241
Author(s):  
Jéderson da Silva ◽  
Jucélio Tomás Pereira ◽  
Diego Amadeu F. Torres

Purpose The purpose of this paper is to propose a new scheme for obtaining acceptable solutions for problems of continuum topology optimization of structures, regarding the distribution and limitation of discretization errors by considering h-adaptivity. Design/methodology/approach The new scheme encompasses, simultaneously, the solution of the optimization problem considering a solid isotropic microstructure with penalization (SIMP) and the application of the h-adaptive finite element method. An analysis of discretization errors is carried out using an a posteriori error estimator based on both the recovery and the abrupt variation of material properties. The estimate of new element sizes is computed by a new h-adaptive technique named “Isotropic Error Density Recovery”, which is based on the construction of the strain energy error density function together with the analytical solution of an optimization problem at the element level. Findings Two-dimensional numerical examples, regarding minimization of the structure compliance and constraint over the material volume, demonstrate the capacity of the methodology in controlling and equidistributing discretization errors, as well as obtaining a great definition of the void–material interface, thanks to the h-adaptivity, when compared with results obtained by other methods based on microstructure. Originality/value This paper presents a new technique to design a mesh made with isotropic triangular finite elements. Furthermore, this technique is applied to continuum topology optimization problems using a new iterative scheme to obtain solutions with controlled discretization errors, measured in terms of the energy norm, and a great resolution of the material boundary. Regarding the computational cost in terms of degrees of freedom, the present scheme provides approximations with considerable less error if compared to the optimization process on fixed meshes.


2020 ◽  
Author(s):  
Simon Flachs ◽  
Ophélie Lacroix ◽  
Helen Yannakoudakis ◽  
Marek Rei ◽  
Anders Søgaard

2019 ◽  
Vol 8 (3) ◽  
pp. 621-653 ◽  
Author(s):  
Minwoo Chae ◽  
Lizhen Lin ◽  
David B Dunson

Abstract We study Bayesian procedures for sparse linear regression when the unknown error distribution is endowed with a non-parametric prior. Specifically, we put a symmetrized Dirichlet process mixture of Gaussian prior on the error density, where the mixing distributions are compactly supported. For the prior on regression coefficients, a mixture of point masses at zero and continuous distributions is considered. Under the assumption that the model is well specified, we study behavior of the posterior with diverging number of predictors. The compatibility and restricted eigenvalue conditions yield the minimax convergence rate of the regression coefficients in $\ell _1$- and $\ell _2$-norms, respectively. In addition, strong model selection consistency and a semi-parametric Bernstein–von Mises theorem are proven under slightly stronger conditions.


Sign in / Sign up

Export Citation Format

Share Document