model selection consistency
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 1)

Biometrika ◽  
2021 ◽  
Author(s):  
Emre Demirkaya ◽  
Yang Feng ◽  
Pallavi Basu ◽  
Jinchi Lv

Summary Model selection is crucial both to high-dimensional learning and to inference for contemporary big data applications in pinpointing the best set of covariates among a sequence of candidate interpretable models. Most existing work assumes implicitly that the models are correctly specified or have fixed dimensionality, yet both are prevalent in practice. In this paper, we exploit the framework of model selection principles under the misspecified generalized linear models presented in Lv and Liu (2014) and investigate the asymptotic expansion of the posterior model probability in the setting of high-dimensional misspecified models.With a natural choice of prior probabilities that encourages interpretability and incorporates the Kullback–Leibler divergence, we suggest the high-dimensional generalized Bayesian information criterion with prior probability for large-scale model selection with misspecification. Our new information criterion characterizes the impacts of both model misspecification and high dimensionality on model selection. We further establish the consistency of covariance contrast matrix estimation and the model selection consistency of the new information criterion in ultra-high dimensions under some mild regularity conditions. The numerical studies demonstrate that our new method enjoys improved model selection consistency compared to its main competitors.


2020 ◽  
pp. 096228022097899
Author(s):  
Xuan Cao ◽  
Kyoungjae Lee ◽  
Qingling Huang

Parkinson’s disease is a progressive, chronic, and neurodegenerative disorder that is primarily diagnosed by clinical examinations and magnetic resonance imaging (MRI). In this paper, we propose a Bayesian model to predict Parkinson’s disease employing a functional MRI (fMRI) based radiomics approach. We consider a spike and slab prior for variable selection in high-dimensional logistic regression models, and present an approximate Gibbs sampler by replacing a logistic distribution with a t-distribution. Under mild conditions, we establish model selection consistency of the induced posterior and illustrate the performance of the proposed method outperforms existing state-of-the-art methods through simulation studies. In fMRI analysis, 6216 whole-brain functional connectivity features are extracted for 50 healthy controls along with 70 Parkinson’s disease patients. We apply our method to the resulting dataset and further show its benefits with a higher average prediction accuracy of 0.83 compared to other contenders based on 10 random splits. The model fitting procedure also reveals the most discriminative brain regions for Parkinson’s disease. These findings demonstrate that the proposed Bayesian variable selection method has the potential to support radiological diagnosis for patients with Parkinson’s disease.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 807
Author(s):  
Xuan Cao ◽  
Kyoungjae Lee

High-dimensional variable selection is an important research topic in modern statistics. While methods using nonlocal priors have been thoroughly studied for variable selection in linear regression, the crucial high-dimensional model selection properties for nonlocal priors in generalized linear models have not been investigated. In this paper, we consider a hierarchical generalized linear regression model with the product moment nonlocal prior over coefficients and examine its properties. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where the number of covariates is allowed to increase at a sub-exponential rate with the sample size. The Laplace approximation is implemented for computing the posterior probabilities and the shotgun stochastic search procedure is suggested for exploring the posterior space. The proposed method is validated through simulation studies and illustrated by a real data example on functional activity analysis in fMRI study for predicting Parkinson’s disease.


2019 ◽  
Vol 36 (3) ◽  
pp. 526-558
Author(s):  
Qingliang Fan ◽  
Xiao Han ◽  
Guangming Pan ◽  
Bibo Jiang

In this article, using a shrinkage estimator, we propose a penalized quasi-maximum likelihood estimator (PQMLE) to estimate a large system of equations in seemingly unrelated regression models, where the number of equations is large relative to the sample size. We develop the asymptotic properties of the PQMLE for both the error covariance matrix and model coefficients. In particular, we derive the asymptotic distribution of the coefficient estimator and the convergence rate of the estimated covariance matrix in terms of the Frobenius norm. The model selection consistency of the covariance matrix estimator is also established. Simulation results show that when the number of equations is large relative to the sample size and the error covariance matrix is sparse, the PQMLE outperforms other contemporary estimators.


2019 ◽  
Vol 8 (3) ◽  
pp. 621-653 ◽  
Author(s):  
Minwoo Chae ◽  
Lizhen Lin ◽  
David B Dunson

Abstract We study Bayesian procedures for sparse linear regression when the unknown error distribution is endowed with a non-parametric prior. Specifically, we put a symmetrized Dirichlet process mixture of Gaussian prior on the error density, where the mixing distributions are compactly supported. For the prior on regression coefficients, a mixture of point masses at zero and continuous distributions is considered. Under the assumption that the model is well specified, we study behavior of the posterior with diverging number of predictors. The compatibility and restricted eigenvalue conditions yield the minimax convergence rate of the regression coefficients in $\ell _1$- and $\ell _2$-norms, respectively. In addition, strong model selection consistency and a semi-parametric Bernstein–von Mises theorem are proven under slightly stronger conditions.


Sign in / Sign up

Export Citation Format

Share Document