spectral variance
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 11 (17) ◽  
pp. 8054
Author(s):  
Zhaoqi Zhang ◽  
Xuelei Feng ◽  
Yong Shen

The estimation of the late reverberant spectral variance (LRSV) is of paramount importance in most reverberation suppression algorithms. This letter proposes an improved single-channel LRSV estimator based on Habets LRSV estimator by using an adaptive parameter estimator. Instead of estimating the direct-to-reverberation ratio (DRR), the proposed LRSV estimator directly estimates the parameter κ in a generalized statistical model since the experimental results show that even the κ calculated using measured ground truth DRR may not be the optimal parameter for the LRSV estimator. Experimental results using synthetic reverberant signals demonstrate the superiority of the proposed estimator to conventional approaches.


2021 ◽  
Vol 68 ◽  
pp. 102746
Author(s):  
Sina Khanmohammadi ◽  
Osvaldo Laurido-Soto ◽  
Lawrence N. Eisenman ◽  
Terrance T. Kummer ◽  
ShiNung Ching

2020 ◽  
pp. 1-27
Author(s):  
Yuliya Lovcha ◽  
Alejandro Perez-Laborda

In this paper, we identify the technology shock at business cycle frequencies to improve the performance of structural vector autoregression models in small samples. To this end, we propose a new identification method based on the spectral decomposition of the variance, which targets the contributions of the shock in theoretical models. Results from a Monte-Carlo assessment show that the proposed method can deliver a precise estimate of the response of hours in small samples. We illustrate the application of our methodology using US data and a standard Real Business Cycle model. We find a positive response of hours in the short run following a non-significant, near-zero impact. This result is robust to a large set of credible parameterizations of the theoretical model.


2019 ◽  
Author(s):  
Etienne Laliberté ◽  
Anna K. Schweiger ◽  
Pierre Legendre

ABSTRACTPlant spectral diversity — how plants differentially interact with solar radiation — is an integrator of plant chemical, structural, and taxonomic diversity that can be remotely sensed. We propose to measure spectral diversity as spectral variance, which allows the partitioning of the spectral diversity of a region, called spectral gamma (γ) diversity, into additive alpha (α; within communities) and beta (β; among communities) components. Our method calculates the contributions of individual bands or spectral features to spectral γ-, β-, and α-diversity, as well as the contributions of individual plant communities to spectral diversity. We present two case studies illustrating how our approach can identify “hotspots” of spectral α-diversity within a region, and discover spectrally unique areas that contribute strongly to β-diversity. Partitioning spectral diversity and mapping its spatial components has many applications for conservation since high local diversity and distinctiveness in composition are two key criteria used to determine the ecological value of ecosystems.


2019 ◽  
Vol 73 (9) ◽  
pp. 1019-1027 ◽  
Author(s):  
Kyle Uckert ◽  
Rohit Bhartia ◽  
John Michel

Cosmic rays can degrade Raman hyperspectral images by introducing high-intensity noise to spectra, obfuscating the results of downstream analyses. We describe a novel method to detect cosmic rays in deep ultraviolet Raman hyperspectral data sets adapted from existing cosmic ray removal methods applied to astronomical images. This method identifies cosmic rays as outliers in the distribution of intensity values in each wavelength channel. In some cases, this algorithm fails to identify cosmic rays in data sets with high inter-spectral variance, uncorrected baseline drift, or few spectra. However, this method effectively identifies cosmic rays in spatially uncorrelated hyperspectral data sets more effectively than other cosmic ray rejection methods and can potentially be employed in commercial and robotic Raman systems to identify cosmic rays semi-autonomously.


Bernoulli ◽  
2018 ◽  
Vol 24 (3) ◽  
pp. 1860-1909 ◽  
Author(s):  
Dootika Vats ◽  
James M. Flegal ◽  
Galin L. Jones

2018 ◽  
Vol 143 (6) ◽  
pp. 3300-3311
Author(s):  
Natalie Agus ◽  
Hans Anderson ◽  
Jer-Ming Chen ◽  
Simon Lui ◽  
Dorien Herremans

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. O55-O66 ◽  
Author(s):  
Yanting Duan ◽  
Chaodong Wu ◽  
Xiaodong Zheng ◽  
Yucheng Huang ◽  
Jian Ma

The eigenstructure-based coherence attribute is a type of efficient and mature tool for mapping geologic edges such as faults and/or channels in the 3D seismic interpretation. However, the eigenstructure-based coherence algorithm is sensitive to low signal-to-noise ratio seismic data, and the coherence results are affected by the dipping structures. Due to the large energy gap between the low- and high-frequency components, the low-frequency components play the principal role in coherence estimation. In contrast, the spectral variance balances the difference between the low- and high-frequency components at a fixed depth. The coherence estimation based on amplitude spectra avoids the effect of the time delays resulting from the dipping structures. Combining the spectral variance with the amplitude spectra avoids the effect of dipping structures and enhances the antinoise performance of the high-frequency components. First, we apply the short-time Fourier transform to obtain the time-frequency spectra of seismic data. Next, we compute the variance values of amplitude spectra. Then, we apply the fast Fourier transform to obtain the amplitude spectra of spectral variance. Finally, we calculate the eigenstructure coherence by using the amplitude spectra of spectral variance as the input. We apply the method to the theoretical models and practical seismic data. In the Marmousi velocity model, the coherence estimation using the amplitude spectra of the spectral variance as input shows more subtle discontinuities, especially in deeper layers. The results from field-data examples demonstrate that the proposed method is helpful for mapping faults and for improving the narrow channel edges’ resolution of interest. Therefore, the coherence algorithm based on the spectral variance analysis may be conducive to the seismic interpretation.


2018 ◽  
Vol 146 (2) ◽  
pp. 543-560 ◽  
Author(s):  
Yue Ying ◽  
Fuqing Zhang ◽  
Jeffrey L. Anderson

Covariance localization remedies sampling errors due to limited ensemble size in ensemble data assimilation. Previous studies suggest that the optimal localization radius depends on ensemble size, observation density and accuracy, as well as the correlation length scale determined by model dynamics. A comprehensive localization theory for multiscale dynamical systems with varying observation density remains an active area of research. Using a two-layer quasigeostrophic (QG) model, this study systematically evaluates the sensitivity of the best Gaspari–Cohn localization radius to changes in model resolution, ensemble size, and observing networks. Numerical experiment results show that the best localization radius is smaller for smaller-scale components of a QG flow, indicating its scale dependency. The best localization radius is rather insensitive to changes in model resolution, as long as the key dynamical processes are reasonably well represented by the low-resolution model with inflation methods that account for representation errors. As ensemble size decreases, the best localization radius shifts to smaller values. However, for nonlocal correlations between an observation and state variables that peak at a certain distance, decreasing localization radii further within this distance does not reduce analysis errors. Increasing the density of an observing network has two effects that both reduce the best localization radius. First, the reduced observation error spectral variance further constrains prior ensembles at large scales. Less large-scale contribution results in a shorter overall correlation length, which favors a smaller localization radius. Second, a denser network provides more independent pieces of information, thus a smaller localization radius still allows the same number of observations to constrain each state variable.


Sign in / Sign up

Export Citation Format

Share Document