granulite terrain
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 13)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 13 (4) ◽  
pp. 1214-1224
Author(s):  
P. Gangatharan ◽  
K. Anbarasu ◽  
M. Satyanarayanan

The present study mainly focused on understanding the magmatic origin and petrogenesis characterization based on the Petrography, major, trace and Rare Earth Element (REE) signatures in the alkaline syenite from Pakkanadu alkaline carbonatite complex. The alkaline plutons from South Indian granulite terrain are intruded along with Archaean epidote-hornblende gneisses. The study area was carbonatite complexes of Tamil Nadu and is characterized by a group of rock associations Carbonatite-Syenite-Pyroxenite - Dunite. From Harker various patterns Pakkanadu alkaline complex syenite showed increasing trends of SiO2, Al2O3, Na2O + K2O opposite to decreasing order of CaO, Fe2O3, MgO, TiO2, P2O5 and MnO trend, suggest fractionation of clinopyroxene, hornblende, sphene, apatite and oxide minerals and feldspar that ruled the fractionation. The concentration of trace elements enriched in Large Ion lithophile elements  (LILE) (Ba, Sr, and Rb) elements and High Field Strength Elements (HFSEs) indicated that the dyke intrusion by differentiation of magma from a mantle source. Rare earth element (REE) distribution of Light rare earth element (LREE) enriched and High rare earth element (HREE) depleted pattern show strongly fractionated pattern with moderate Eu anomalies. Plots of tectonic discrimination diagrams of Pakkanadu samples fall in the field of syn-COLG field to the VAG syn- COLG field.     For the first time, this type of study was carried out in the study region in a detailed manner. The present study significantly exposed the petrography, petrogenesis and magmatic origin process in the Pakkanadu alkaline carbonatite complex. 


2021 ◽  
Author(s):  
Madhusmita Swain ◽  
Sukumari Rekha

<p>The Sargur schist belt (SSB) - one of the oldest supracrustal belt (>3.4 Ga) - occurs as discontinuous band along the south-eastern part of Western Dharwar Craton of Indian peninsula. It is a 320 km long belt present in form of lenses, sheets, enclaves, pockets, patches and disrupted layers within the peninsular gneisses, tectonically interleaved, deformed and metamorphosed together with the associated supracrustal rocks (Janardhan et al., 1978; Srikantappa et al., 1984, 1985; Bidyananda and Mitra, 2005; Jayananda et al., 2008). The SSB shows a wide variation in lithology ranging from metapelites, metamafites, metaultramafites, quartzites, calc-silicates etc. with a varying metamorphic grade from greenschist to granulite facies. The major rock types in the study area include garnet-biotite±muscovite±staurolite schist, talc-tremolite-chlorite schist, banded magnetite quartzite, micaceous quartzite, hornblende-biotite±garnet gneiss, amphibolite schist, pyroxene granulites, foliated/deformed granite etc. The fabric in schistose rocks is mainly defined by the shape preferred aggregates of biotite-muscovite (in metapelites) and tremolite-talc-chlorite/amphibole (in metamafites/ultramafites). Whereas the gneissic fabric is defined by the quartzo-feldspathic rich leucocratic layers and biotite-garnet-amphibole-pyroxene rich melanocratic layers.</p><p>In the northern part, the SSB trends roughly N-S but towards the southern part the fabric orientation changes to E-W, whereas the dip is nearly vertical through-out the belt. The belt has undergone at least three phases of deformations. In the northern part the most penetrative fabric is a crenulation cleavage S<sub>1</sub>. The S<sub>1</sub> fabric describes open asymmetric folds having sub-vertical N-S and NNE-SSW axial plane (S<sub>2</sub>). The F<sub>2</sub> fold plunges gentle to moderately towards NNE to SSW. A set of E-W trending shears (S<sub>3</sub>) truncating the S<sub>2</sub> axial zones are zonally developed. In the southern part, as the E-W trending Moyar shear zone approaches, the early fabrics are obliterated or brought into parallelism with the E-W trending penetrative S<sub>3</sub> fabric. U-Th-total Pb dating of texturally controlled metamorphic monazites have yielded mainly two different age peaks at 2.2-2.3Ga and 2.4-2.5Ga with few older ages of ~2.7Ga ages along the northern part while the sample from the southern part (near to the E-W trending Moyar shear zone) gave younger ages ranging from 700-850 Ma and 500-600 Ma.</p><p>From the integration of structural and chronological data the D<sub>2</sub> deformation corresponds to the E-W shortening during the East and West Dharwar Craton accretion is syn- to post-tectonic with respect to the 2.4-2.6 Ga monazite growth. The 700-850 Ma and 500-600 Ma monazite growths post-tectonic with respect to the D<sub>3</sub> deformation indicates that the Neoproterozoic accretionary events affected the whole Southern Granulite Terrain and recrystallize the monazites present in the Moyar shear zone.</p>


2021 ◽  
Vol 40f (1) ◽  
pp. 25-37
Author(s):  
G. Indu ◽  
E. Shaji ◽  
R.B. Binojkumar ◽  
M. Santosh ◽  
T. Tsunogae

Author(s):  
Thirukumaran V ◽  
Suresh R

Kanjamalai one of the fascinating location in Southern Granulite Terrain (SGT) for studying Archaean geology and structures as the entire hill is made up of variety of rock types like two pyroxene granulite, amphibolites, quartzo - feldsapthic gneisses, banded iron formation, and intrusive rocks like dunite, peridotite and pegmatite and beautifully carved structures. The entire hill resembles a canoe shape with doubly plunging fold structure with E-W elongation. The entire hillock seems to sit pretty on mylonitised hornblende biotite gneisses which also have a common N70-95 degree trend and sub vertical dip with NE plunge which is in contradiction to centrally plunging lineations of the hill. The SW part of Kanjamalai near Chinasrirangapadi was displaying beautiful fold structures, with interference pattern out of which six domains were selected for detailed study and analysis. The multiple generation folded structure will have a clue in reconstructing the deformation history of this Kanjamalai. The observed f1, f2 and f3 folds show significant Type III interference pattern as that of Ramsay and 01 and 03 type folds of Bernhard Grasemann.   Wavelength –amplitude analysis was made to generalize and regroup the observed folds in to high amplitude, high wavelength or open folds, low wavelength and Mesoscopic folds. And visual harmonic analysis was made to analyse the symmetry of the folds and analyze the geometry, symmetry and harmony and genesis of the fold in terms of relative timing of the events.


Sign in / Sign up

Export Citation Format

Share Document