scholarly journals Study on interaction mechanism of different atomic ratio of neodymium, arsenic and iron

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juncheng Mao ◽  
Run Huang ◽  
Chenghui Fu ◽  
Xiaodong Lv ◽  
Lihua He ◽  
...  

AbstractIn this study, neodymium and arsenic were sealed into industrial pure iron cylinders at a temperature of 1223 K for 50 h. The interaction mechanism of the Nd–Fe–As system at various atomic ratios was investigated by optical microscopy, X-ray diffractometry, and scanning electron microscopy. Binary compounds Fe12As5, NdAs, Fe2As, and Fe17Nd2 were the main products formed, with traces of NdFeAs compounds. In addition, at high temperatures, As content affected the diffusion of Fe atoms; the diffusion of Fe increased with an increase in the atomic ratio. Furthermore, the diffusion ability of Nd was weaker than that of As. The major diffusion mechanism of Nd was through the Fe atomic vacancy mechanism. As mainly bind to Fe to form Fe and As compounds. The formation of ternary compounds was confirmed by laboratory experiments and mismatch calculations.

2020 ◽  
Author(s):  
Juncheng Mao ◽  
Run Huang ◽  
Chenghui Fu ◽  
Xiaodong Lv ◽  
Lihua He ◽  
...  

Abstract In this study, neodymium and arsenic were sealed into industrial pure iron cylinders at a temperature of 1223 K for 50 h. The interaction mechanism of the Nd-Fe-As system at various atomic ratios was investigated by optical microscopy, X-ray diffractometry, and scanning electron microscopy. Binary compounds Fe12As5, NdAs, Fe2As, and Fe17Na2 were the main products formed, with traces of NdFeAs compounds. In addition, at high temperatures, As content affected the diffusion of Fe atoms; the diffusion of Fe increased with an increase in the atomic ratio. Furthermore, the diffusion ability of Nd was weaker than that of As. The major diffusion mechanism of Nd was through the Fe atomic vacancy mechanism. As mainly bind to Fe to form Fe and As compounds. The formation of ternary compounds was confirmed by laboratory experiments and mismatch calculations.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3060
Author(s):  
Chenghui Fu ◽  
Run Huang ◽  
Wenhao Xie ◽  
Jinxiao Luo ◽  
Yulian Li ◽  
...  

In this study, Nd and As are mainly sealed into industrial pure Fe cylinders. The effect of different temperatures on the high-temperature interaction of an Nd–Fe–As ternary system is studied via X-ray diffraction, optical microscopy, and scanning electron microscopy after heat insulation for 30 h at 1173, 1223, and 1273 K. The results show that the common products under high-temperature interaction are NdAs, Fe17Nd2, and Fe. Fe12As5 is present at 1173 K, whereas Fe2As is produced at 1223 and 1273 K. The diffusion ability of Nd is weaker than that of As. Nd mainly diffuses through the Fe atomic vacancy mechanism. As mainly binds to Fe to form Fe and As compounds.


2016 ◽  
Vol 1735 ◽  
Author(s):  
Barys V. Korzun ◽  
Valery R. Sobol ◽  
Marin Rusu ◽  
Ruben M. Savizky ◽  
Alena A. Fadzeyeva ◽  
...  

ABSTRACTThe CuInSe2 and CuSbSe2 ternary compounds and alloys of the (CuSbSe2)1-x·(CuInSe2)x system with the mole fraction of CuInSe2 (x) equal to 0.05, 0.15, 0.25, 0.375, 0.50, 0.625, 0.75, 0.85, and 0.95 were prepared and the phase relations in this system were investigated by X-ray powder diffraction, optical microscopy, and scanning electron microscopy. It was shown that the alloys of the CuSbSe2-CuInSe2 system are biphasic at room temperature in the whole range of compositions, and the limits of solubility for CuSbSe2 in CuInSe2 and for CuInSe2 in CuSbSe2 do not exceed 0.001 mole fraction.


2011 ◽  
Vol 364 ◽  
pp. 500-503 ◽  
Author(s):  
S. J. Kasim ◽  
F. H. Khaleel ◽  
F. A. Kasim ◽  
M.A. Mahdi

Ag2S nanorods and nonoparticles have been successfully prepared using chemical method. Silver nitrate with molar concentration of 0.1 M and thiourea with different molar concentration were used as a source of Ag++and S++ions, respectively. The pH of solution was in range of 10-11. Scanning electron microscopy (SEM) image showed that the nanorods length and diameter were 2.5-3 μm and 300-400 nm, respectively. X-ray diffraction results showed a monoclinic α-Ag2S phase was obtained. The atomic ratio of silver and sulphur were found using energy dispersive spectroscopy (EDS) and it was 62.39% and 37.61%, respectively.


2008 ◽  
Vol 8 (12) ◽  
pp. 6406-6413 ◽  
Author(s):  
F. Paraguay-Delgado ◽  
R. García-Alamilla ◽  
J. A. Lumbreras ◽  
E. Cizniega ◽  
G. Alonso-Núñez

Two trimetallic sulfurs, MoWNiS and MoWSNi, were synthesized to be used as a catalyst in hydrodesulfurization reactions. The mixed oxide mesoporous nanostructured MoO3-WO3 with an Mo:W atomic ratio of 1:1 was used as the precursor. The first catalyst was prepared by impregnating nickel in the oxide precursor and then subsequent sulfiding with an H2S/H2 mix at 400 °C for 2 hours. The second catalyst was prepared by sulfiding the precursor and then impregnating the nickel, and finally reducing the material with a H2/N2 at 350 °C. In both catalysts the Mo:W:Ni atomic ratio was maintained at 1:1:0.5. The materials obtained were characterized by physical adsorption of nitrogen, X-ray diffraction, scanning electron microscopy, transmission electron microscopy. Furthermore, the materials obtained were evaluated by a dibenzothiophene hydrodesulfuration reaction. The diffraction patterns show that both materials are polycrystalline and mainly of MoS2 and WS2 phases.


2012 ◽  
Vol 517 ◽  
pp. 363-366 ◽  
Author(s):  
Li Guang Xiao ◽  
Feng Luo ◽  
Rui Bo Li ◽  
Chang Yu Liu

Magnesium slag cementitious material was prepared successfully using the magnesium slag-furnace slag-clinker system and different activators in this paper. The effect of activator on the mechanical property of the material was studied. The hydration and microstructure of this composite cement were analyzed by X-ray diffraction and scanning electron microscopy and the interaction mechanism was researched. The results show that the activity of magnesium slag was enhanced significantly by adding a small amount of activator. Combined activators have the best effect. The hydration products of magnesium slag cementitious materials mortar were C-S-H, Aft and Ca (OH)2 and so on.


2015 ◽  
Vol 655 ◽  
pp. 68-71
Author(s):  
Yuan Yuan Zhu ◽  
Jin Jia ◽  
Ai Guo Zhou ◽  
Li Bo Wang ◽  
Qing Feng Zan

Layered ternary compounds Ti3SiC2combines attractive properties of both ceramics and metals, and has been suggested for potential engineering applications. Near-fully dense Ti3SiC2bulks were sintered from commercial Ti3SiC2powders by hot press at 1350°C-1600°C for 60-120min under Ar atmosphere in this paper. The phase compositions and morphology of the as-prepared samples were evaluated by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). And the mechanical properties were measured by Three-Point bending method. It was found that the Ti3SiC2had only a little of decomposition at sintering temperature above 1350°C. And effects of sintering temperature and holding time on the morphology of the bulk Ti3SiC2are not obvious. Relative density of 98% and flexural strength of 480MPa were obtained for the Ti3SiC2samples sintered at 30MPa and 1400°C for 90min.


2015 ◽  
Vol 80 (7) ◽  
pp. 889-902 ◽  
Author(s):  
Zhengbo Hou ◽  
Weixia Zhu ◽  
Hang Song ◽  
Pengfei Chen ◽  
Shun Yao

The composite hydrogels based on N,N?-dimethylamino ethyl methacrylate (DMAEMA) and polyethyleneimine (PEI) were prepared by amino radical polymerization and confirmed by Fourier Transform Infrared Spectra (FTIR) and elemental analysis. Then adsorption behavior and mechanism of Cr(VI) ions on the obtained materials were investigated with scanning electron microscope, Zeta potential and thermal gravity analysis, etc. The adsorption process was found to follow the pseudo-second order kinetics and Langmuir model, and the maximum adsorption capacity of Cr(VI) ions reached 122.8 mg g-1. X-ray photoelectron spectroscopy (XPS) and pH analysis revealed that the Cr(VI) ions were adsorbed into the gels through electrostatic interaction mechanism, and SO42- in the solution had a great effect on the adsorption process. In addition, high pH and ionic strength could reduce the uptakes of adsorbate, which could be used for desorption of Cr(VI) ions from the gels.


2011 ◽  
Vol 26 (1) ◽  
pp. 9-15
Author(s):  
Y. Q. Chen ◽  
J. K. Liang ◽  
J. Luo ◽  
J. B. Li ◽  
G. H. Rao

The subsolidus phase relations of the Dy-Fe-Al system have been investigated by means of X-ray powder diffraction. There are 5 ternary compounds, 10 binary compounds, and 21 three-phase regions in this system. The solid-solution regions of Dy(Fe1−xAlx)2, DyFe3−xAlx, Dy2(Fe1−xAlx)17, and DyFe12−xAlx have been determined based on the dependence of their unit-cell parameters on the Al content.


2011 ◽  
Vol 305 ◽  
pp. 367-371
Author(s):  
Ning Li ◽  
Xi Ping Li ◽  
Guang Ming Cheng

Ni-Mo alloys have been studied as a prospected cathode for its higher hydrogen evolution reaction properties than other binary compounds. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) microstructures show that the amorphous/nanocrystal Ni-Mo deposits were deposited. The Ni-Mo deposits cathode are electrolyzed in 25°C, 7 mol/L NaOH electrolytic solution. And when η100, the amorphous/nanocrystal Ni-Mo alloy with a lower hydrogen evolution overpotential, a higher exchange current density, and a better electrolytic stability is lower than amorphous Ni-Mo deposits. This is due to the amorphous content combined with nanocrystalline structure, lager contact surface and binding energy of Ni-Mo structure.


Sign in / Sign up

Export Citation Format

Share Document