wide band model
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 0)

2020 ◽  
Vol 6 (6) ◽  
pp. 42-47
Author(s):  
A. Abdullin

The influence of the spectral model of radiation on heat fluxes and the temperature of combustion products in the radiant chambers of tube furnaces of the petrochemical industry is analyzed. A wide-band model and a Hottel gray model are considered. It is shown that the spectral model of the combustion medium radiation weakly affects the calculated characteristics of the total heat transfer.


2018 ◽  
Vol 7 (1) ◽  
pp. 41-50
Author(s):  
J. Gholinejhad ◽  
R. Shariatinasab ◽  
K. Sheshyekani

This paper presents a probabilistic evaluation, based on Monte-Carlo method, for the estimation of insulation risk of failure of overhead transmission lines (TLs). The proposed method takes into account the wide-band model of tower-footing grounding system. The wide-band model of grounding system in frequency domain is obtained by the method of moment solution to the governing electrical field integral equations. The electrical parameters of soil are considered to be either constant or frequency dependent. The time-domain representation of the grounding system is inferred through pole-zero characterization of its associated frequency response. The case of a typical 400-kV transmission line is modelled in EMTP_RV with the tower-footing grounding system integrated with the transmission line (TL) system. The results of the paper show that the failure risk of transmission lines is affected by the grounding system model. This effect is more pronounced when the soil electrical parameters are assumed to be frequency dependent.


Author(s):  
German Malikov ◽  
Alexandr Titaev ◽  
Vladimir Lisienko ◽  
Raymond Viskanta

A new and simple expression for the calculation of the total gas emittance of H2O-CO2 mixtures for modeling radiation transfer in combustion furnaces is presented. Its accuracy is established by comparing the predictions with those based on the well established exponential wide band model. The computational time was found to be reduced by a factor of 10–30 in comparison to other methods for computing the total emittance of combustion gas mixtures.


Author(s):  
Rasit Onur Topaloglu ◽  
Jung-Suk Goo ◽  
Alvin L. S. Loke ◽  
Michael M. Oshima ◽  
Sam Wonsae Sim

Author(s):  
Gautham Krishnamoorthy ◽  
Muhammad Sami ◽  
Stefano Orsino ◽  
Anura Perera ◽  
Mehrdad Shahnam ◽  
...  

Three gray models for the radiative properties of gases were examined for their usage in oxy-combustion simulations of a full scale boiler with flue gas recycle. Fully coupled computational fluid dynamic (CFD) simulations of a full scale boiler were carried out employing the weighted-sum-of-gray-gases model (WSGGM) at air burn, dry-recycle and wet-recycle conditions. The resulting thermal and composition fields were then frozen and the radiative properties of the gaseous media recomputed employing the Exponential Wide Band Model (EWBM) and correlations for total emissivities of gas mixtures. It is shown that when high CO2/H2O ratios were encountered within the boiler such as in dry-recycle scenarios, employing emissivity correlations developed for purely CO2 media within the models can result in incorrect gas properties. The errors associated with this can be significant when there are large pockets within the furnace where the gas radiation dominates the particle radiation.


Sign in / Sign up

Export Citation Format

Share Document