scholarly journals Simulation of a Severe Sand and Dust Storm Event in March 2021 in Northern China: Dust Emission Schemes Comparison and the Role of Gusty Wind

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Jikang Wang ◽  
Bihui Zhang ◽  
Hengde Zhang ◽  
Cong Hua ◽  
Linchang An ◽  
...  

Northern China experienced a severe sand and dust storm (SDS) on 14/15 March 2021. It was difficult to simulate this severe SDS event accurately. This study compared the performances of three dust-emission schemes on simulating PM10 concentration during this SDS event by implementing three vertical dust flux parameterizations in the Comprehensive Air-Quality Model with Extensions (CAMx) model. Additionally, a statistical gusty-wind model was implemented in the dust-emission scheme, and it was used to quantify the gusty-wind contribution to dust emissions and peak PM10 concentration. As a result, the LS scheme (Lu and Shao 1999) produced the minimum errors for peak PM10 concentrations, the MB scheme (Marticorena and Bergametti 1995) underestimated the PM10 concentrations by 70–90%, and the KOK scheme (Kok et al. 2014) overestimated PM10 concentrations by 10–50% in most areas. The gusty-wind model could reasonably reproduce the probability density function of 2-min wind speeds. There were 5–40% more dust-emission flux and 5–40% more peak PM10 concentrations generated by the gusty wind than the hourly wind in the dust-source regions. The increase of peak PM10 concentration caused by gusty wind in the non-dust-source regions was higher than in the dust-source regions, with 10–50%. Implementing the gusty-wind model could help improve the LS scheme’s performance in simulating PM10 concentrations of this severe SDS event. More work is still needed to investigate the reliability of the gusty-wind model and LS scheme on various SDS events.

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 593
Author(s):  
Sang-Boom Ryoo ◽  
Jinwon Kim ◽  
Jeong Hoon Cho

Recently, the Korea Meteorological Administration developed Asian Dust Aerosol Model version 3 (ADAM3) by incorporating additional parameters into ADAM2, including anthropogenic particulate matter (PM) emissions, modification of dust generation by considering real-time surface vegetation, and assimilations of surface PM observations and satellite-measured aerosol optical depth. This study evaluates the performance of ADAM3 in identifying Asian dust days over the dust source regions in Northern China and their variations according to regions and soil types by comparing its performance with ADAM2 (from January to June of 2017). In all regions the performance of ADAM3 was markedly improved, especially for Northwestern China, where the threat score (TS) and the probability of detection (POD) improved from 5.4% and 5.5% to 30.4% and 34.4%, respectively. ADAM3 outperforms ADAM2 for all soil types, especially for the sand-type soil for which TS and POD are improved from 39.2.0% and 50.7% to 48.9% and 68.2%, respectively. Despite these improvements in regions and surface soil types, Asian dust emission formulas in ADAM3 need improvement for the loess-type soils to modulate the overestimation of Asian dust events related to anthropogenic emissions in the Huabei Plain and Manchuria.


2007 ◽  
Vol 7 (3) ◽  
pp. 9115-9138 ◽  
Author(s):  
Y. Q. Wang ◽  
X. Y. Zhang ◽  
S. L. Gong ◽  
C. H. Zhou ◽  
X. Q. Hu ◽  
...  

Abstract. The spatial-temporal distributions and sources of sand and dust storm (SDS) in East Asia from 2001 to 2006 were investigated on the basis of visibility and PM10 data from the routine SDS and weather monitoring networks run by CMA (China Meteorological Administration). A power functional relationships between PM10 and visibility was found among various regions generally with a good correlation (r2=0.90), especially in Asian SDS source regions. In addition, three SDS occurrence centers, i.e. western China, Mongolia and northern China, were identified with the Mongolia source contributing more dust to the downwind areas including Korea and Japan than other two sources. Generally, high PM10 concentrations were observed in most areas of northern China. The highest value was obtained in the center of western China with a spring daily mean value of 876 μg m−3, and the value in other source regions exceeds 200 μg m−3. These data sets together with the satellite observations in China form the main observation database for the evaluation and data assimilation of CUACE/Dust system – an operational SDS forecasting system for East Asia.


2008 ◽  
Vol 8 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Y. Q. Wang ◽  
X. Y. Zhang ◽  
S. L. Gong ◽  
C. H. Zhou ◽  
X. Q. Hu ◽  
...  

Abstract. The spatial-temporal distributions and sources of sand and dust storm (SDS) in East Asia from 2001 to 2006 were investigated on the basis of visibility and PM10 data from the routine SDS and weather monitoring networks run by CMA (China Meteorological Administration). A power functional relationships between PM10 and visibility was found among various regions generally with a good correlation (r2=0.90), especially in Asian SDS source regions. In addition, three SDS occurrence centers, i.e. western China, Mongolia and northern China, were identified with the Mongolia source contributing more dust to the downwind areas including Korea and Japan than other two sources. Generally, high PM10 concentrations were observed in most areas of northern China. The highest value was obtained in the center of western China with a spring daily mean value of 876 μgm−3, and the value in other source regions exceeds 200 μgm−3. These data sets together with the satellite observations in China form the main observation database for the evaluation and data assimilation of CUACE/Dust system – an operational SDS forecasting system for East Asia.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 135 ◽  
Author(s):  
Ping Song ◽  
Jianfang Fei ◽  
Changshun Li ◽  
Xiaogang Huang

Dust particles in the atmosphere play an important role in air pollution, climate change, and biogeochemical cycles. Some of the dominant sources of dust in mid-latitude regions are in Asia. An intense dust storm engulfed Northern China at the beginning of May 2017, and PM10 mass concentrations of 1500–2000 μg m−3 were measured near the dust source region. We combined numerical simulations, air quality monitoring data, and satellite retrievals to investigate dust emission and transport during this event. We found that the event was closely related to cold front activity, characterized by increased wind speed, which increased dust emission. We improved the dust scheme using a local dust size distribution to better simulate the dust emission flux. We found that accurate parametrization of the dust size distribution was important to effectively simulate both dust emission and ambient particle concentration. We showed that using a local dust size distribution substantially improved the accuracy of the simulation, allowing both the spatial distribution of pollution caused by the dust storm and temporal variability in the pollution to be captured.


2019 ◽  
Vol 11 (4) ◽  
pp. 1074
Author(s):  
Siqi Ma ◽  
Xuelei Zhang ◽  
Chao Gao ◽  
Quansong Tong ◽  
Aijun Xiu ◽  
...  

The accurate forecasting of dust emission and transport is a societal demand worldwide as dust pollution is part of many health, economic, and environment issues, which significantly impact sustainable development. The dust forecasting ability of present air quality forecast systems is mainly focused on spring dust events in East Asia, but further improvement may be needed as there is still difficulty in forecasting autumn dust activities, such as failing to predict the serious dust storm that occurred on 25 to 26 November 2018. In this study, a state-of-the-art air quality model, CHIMERE, with three coupled dust schemes was introduced for the first time to simulate the dust emissions during this event to qualitatively and quantitatively validate its dust simulating performance over Northern China. The model results reported that two of the three dust schemes were able to capture the dust emission source located in Gansu Province and reproduce the easterly dust transport path, showing moderately close agreement in the horizontal and vertical distribution patterns with the ground-based and satellite observations. The simulated PM10 concentration had a better relationship with the observed values with a correlation coefficient up to 0.96, while it was lower in the transported areas. Meanwhile, the simulations also presented incorrect dust emission positions such as in areas between the Hulun Buir sandy land and Horqin sandy land. Our results indicate that CHIMERE exhibits reasonably good performance regarding its dust simulation and forecast ability over this area, and its application would help to improve the dust analysis and forecast abilities in Northern China.


2006 ◽  
Vol 6 (6) ◽  
pp. 12825-12864 ◽  
Author(s):  
Y. L. Sun ◽  
G. S. Zhuang ◽  
Z. F. Wang ◽  
Y. Wang ◽  
W. J. Zhang ◽  
...  

Abstract. TSP and PM2.5 aerosol samples were synchronously collected at six sites along the transport pathway of dust storm from desert regions to coastal areas in the spring of 2004. The aerosol concentration and composition were measured to investigate the regional characteristics of spring Asian dust and its impact on aerosol chemistry over northern China. Based on the daily PM10 concentrations in 13 cities, the northern China could be divided into five regions, i.e., Northern Dust Region, Northeastern Dust Region, Western Dust Region, Inland Passing Region, and Coastal Region. Northern Dust Region was characterized by high content of Ca and Northeastern Dust Region was characterized by low one instead. Northeastern Dust Region was a relatively clean area with the lowest concentrations of pollutants and secondary ions among all sites. Inland Passing Region and Coastal Region showed high concentrations of pollutants, of which As and Pb in Inland Passing Region, and Na+, SO42− and NO3− in Coastal Region were the highest, respectively. The impact of dust on air quality was the greatest in the cities near source regions, and this impact decreased in the order of Yulin/Duolun > Beijing > Qingdao/Shanghai as the increase of transport distance. The spring Asian dust was inclined to affect the chemical components in coarse particles near source regions and those in fine particles in the cities far from source regions. Dust storm could mix significant quantities of pollutants on the pathway and carry them to the downwind cities or dilute the pollutants in the cities over northern China. Each dust episode corresponded to a low ratio of NO3−/SO42− with the lowest value appearing after the peak of dust storm. Asian dust played an important role in buffering and neutralizing the acidity of atmosphere in the cities over northern China, which could lead to the pH in the aerosols increase ~1 in spring.


2021 ◽  
Author(s):  
Tianle Yuan ◽  
Hongbin Yu ◽  
Mian Chin ◽  
Lorraine Remer ◽  
David McGee ◽  
...  

<p>African dust exhibits strong variability on a range of time scales. Here we show that the interhemispheric contrast in Atlantic SST (ICAS) drives African dust variability at decadal to millennial timescales, and the strong anthropogenic increase of the ICAS in the future will decrease African dust loading to a level never seen during the Holocene. We provide a physical framework to understand the relationship between the ICAS and African dust activity: positive ICAS anomalies push the Intertropical Convergence Zone (ITCZ) northward and decrease surface wind speed over African dust source regions, which reduces dust emission and transport. It provides a unified framework for and is consistent with relationships in the literature. We find strong observational and proxy‐record support for the ICAS‐ITCZ‐dust relationship during the past 160 and 17,000 years. Model‐projected anthropogenic increase of the ICAS will reduce African dust by as much as 60%, which has broad consequences. We posit that dust cannot be thought of as a purely natural phenomenon.</p>


2021 ◽  
Vol 13 (16) ◽  
pp. 3139
Author(s):  
Jeong Hoon Cho ◽  
Sang-Boom Ryoo ◽  
Jinwon Kim

Dust events in Northeast Asia have several adverse effects on human health, agricultural land, infrastructure, and transport. Wind speed is the most important factor in determining the total dust emission at the land surface; however, various land-surface conditions must be considered as well. Recently, the Korea Meteorological Administration updated the dust emission reduction factor (RF) in the Asian Dust Aerosol Model 3 (ADAM3) using data from the normalized difference vegetation index (NDVI) of the Moderate Resolution Imaging Spectroradiometer (MODIS). We evaluated the improvements of ADAM3 according to soil types. We incorporated new RF formulations in the evaluation based on real-time MODIS NDVI data obtained over the Asian dust source regions in northern China during spring 2017. This incorporation improved the simulation performance of ADAM3 for the PM10 mass concentration in Inner Mongolia and Manchuria for all soil types, except Gobi. The ADAM3 skill scores for sand, loess, and mixed types in a 24 h forecast increased by 6.6%, 20.4%, and 13.3%, respectively, compared with those in forecasts employing the monthly RF based on the NDVI data. As surface conditions in the dust source regions continually change, incorporating real-time vegetation data is critical to improving performance of dust forecast models such as ADAM3.


Author(s):  
Peng Liang ◽  
Bo Chen ◽  
Xiaoping Yang ◽  
Qianqian Liu ◽  
Airui Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document