penetration index
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 3)

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Jiaxing Dong ◽  
Runxue Yang ◽  
Chenggang Guo ◽  
Meiqian Wang ◽  
Yonghong Wu ◽  
...  

Abstract The sericite schist is a typical metamorphic soft rock. Large deformation of surrounding rock often occurs in the construction of a tunnel in this stratum. Due to the broken rock mass structure and poor mechanical strength in Baishitou tunnel project of Dalin line of Southwest railway, it is impossible to prepare standard samples for a traditional rock mechanical test. Therefore, we chose penetrometer (SH-70) for an in situ test. Firstly, we monitored the deformation of typical sections and analyzed the characteristics of large deformation of soft rock in the tunnel. Secondly, we tested the needle penetration index of fresh excavation face and side wall. Then, we estimated some mechanical parameters of sericite schist by a needle penetrometer and Hoek-brown criterion and discussed the acquisition of mechanical parameters of soft rock. The results show the following: (1) the characteristics of extrusion rock tunnel are summarized as large deformation, fast deformation rate, and obvious construction disturbance. (2) The reference value of penetration index of sericite schist (the vertical joint direction) is 3.90~7.77 N/mm, and the parallel joint direction is 1.27~2.99 N/mm. (3) The uniaxial compressive strength estimated by a penetrometer is 0.78~8.53 MPa, and the strength of the surrounding rock is negatively correlated with the amount of deformation. Therefore, it can be considered that the insufficient strength of surrounding rock is the fundamental reason for large deformation. (4) The reference value of cohesion of sericite schist estimated by a penetrometer is 0.203 MPa, and the reference value of internal friction angle is 18.224°. Compared with the common estimation methods, the penetrometer is more convenient and economical, which can provide a new idea for obtaining the mechanical parameters of sericite schist soft rock tunnel.


Author(s):  
Hayder Al Hawesah ◽  
Monower Sadique ◽  
Clare Harris ◽  
Hassan Al Nageim ◽  
Karl Stopp ◽  
...  

The quality of asphalt pavement maintenance depends on several important factors, including the selection of patching materials and choice of repair technique. Conventional hot mix plants operate to support large paving projects, and economy favors high-volume output. When repairs and maintenance are needed it can be challenging to maintain small quantities of hot bituminous mixtures at a sufficient temperature, especially in the case of winter maintenance and consequently the repair materials cannot be compacted to the desired level in some occasions. The temperature sensitivity plays a significant factor to understand the asphalt pavement failures and indicates how quickly asphalt properties change over time in terms of indices such as penetration index. Therefore, this research aims to develop a polymer-modified binder with reduced temperature sensitivity, and it can be used for hand-laid application in small quantities for emergency winter repair and maintenance. The results showed that the highest penetration index has been achieved by modifying bitumen with 20% rubber and 2% wax, which is reduced the temperature sensitivity by 168%. Additionally, the Fourier Transform Infrared Spectroscopy (FTIR) test and X-Ray Diffraction (XRD) test were conducted to monitor the changes in the chemical composition and identify crystalline phases of polymer modified binder from the aspect of functional groups. It is indicated that the bitumen, rubber, and wax react chemically to build 3D networks that have an interlaced form in the bitumen matrix resulting in reduced temperature sensitivity of the polymer modified binder.


Author(s):  
Noam Gavriely ◽  
Olga Volkov ◽  
Gershon Fink ◽  
Isaac Shpirer ◽  
Haim Golan

2021 ◽  
pp. 1-9
Author(s):  
Ahmad Batari ◽  
Saeed Modibbo ◽  
Balarabe Babangida ◽  
Isa Zubairu ◽  
Mohamad Aman

Primarily, the main aim of recycling waste tires in the form of micronized crumb rubber into asphalt cement as modifiers are to enhance their engineering properties in addition to the associated solid waste management benefits. Often, these modifiers are used to achieve reasonably stiffer binders i.e.; low penetration; high softening point; and high penetration index, to realize higher resistance to deformation under the influence of traffic and temperature. The study assessed the effects of Micronized Crumb Rubber (MCR) on the penetration, softening point, and penetration index of 80-100 PEN bitumen impregnated with 2.5 % Sasobit (fixed by weight). The MCR modified warm asphalt binders were prepared by further blending with different percentages of minus 40 mesh size MCR powder (from0 – 15 % by weight of the bitumen stepped at 2.5%). Subsequently, penetration and softening point tests were conducted on each blend, and the corresponding penetration indices were evaluated. The results show that MCR addition gradually decreases the penetration values while conversely increases both the softening point values and the penetration indices as well. Thus, MCR might be used to improve the flow and thermal susceptibility resistance of warm asphalt binders


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sair Kahraman ◽  
A. Sercan Aloglu ◽  
Egemen Saygin ◽  
Bilal Aydin

AbstractThe needle penetration index (NPI) test is a non-destructive test that is applicable both in the field and laboratory, and does not require any special sample preparation. This test has been used for the estimation of physico-mechanical properties of soft rocks. In this study, the influence of the clay content on the relation between uniaxial compressive strength (UCS) and the NPI has been investigated for some clay-bearing rocks. The needle penetration tests were carried out at nine different gallery faces during the Cayirhan Coal Mine excavations, and the NPI values were calculated. Claystone, clayey limestone and clay blocks were collected from the locations on which the NPI tests were performed for the determination of rock strength and clay contents. The clay contents and clay fractions of the samples were determined using XRD analysis. A strong correlation has been found between the UCS and the NPI, but some of the data points were scattered. Strong correlations were also found between the NPI and both the total clay content and the smectite content. The UCS values were also strongly correlated to the total clay content and the smectite content. A multiple regression analysis was performed to determine the influence of clay content on the UCS-NPI relation and a very strong model was derived. The correlation coefficient of the multiple regression model is fairly higher than that of the UCS-NPI relation derived by using simple regression analysis. Concluding remark is that the clay content significantly affects the UCS-NPI relation in clay-bearing rocks.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5782
Author(s):  
Jong-Sub Lee ◽  
Yong-Hoon Byun

Subsurface characterization is essential for a successful infrastructure design and construction. This paper demonstrates the use of an instrumented cone penetrometer (ICP) for a dense layer characterization at two sites. The ICP consists of a cone tip and rods equipped with an accelerometer and four strain gauges, which allow dynamic driving, in addition to quasi-static pushing of the cone. The force and velocity of the cone are measured using the ICP instrumentation and compared with the N value, dynamic cone penetration index, and static cone resistance. A strong correlation has been observed between the total cone resistance estimated from the ICP and the dynamic cone penetration index and static cone resistance. After the correction of the dynamic cone resistance effect, the static component of the total cone resistance can be used as an alternative to a static cone resistance. This novel approach of soil resistance estimation using the ICP may be useful for dense layer characterization.


Sign in / Sign up

Export Citation Format

Share Document