minimum delay time
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255737
Author(s):  
Zhengyu Hu ◽  
Wenrui Liu ◽  
Shengchen Ling ◽  
Kuan Fan

In order to solve the problem of unbalanced workload of employees in parallel flow shop scheduling, a method of job standard balance is proposed to describe the work balance of employees. The minimum delay time of completion and the imbalance of employee work are taken as the two goals of the model. A bi-objective nonlinear integer programming model is proposed. NSGA-II-EDSP, NSGA-II-KES, and NSGA-II-QKES heuristic rule algorithms are designed to solve the problem. A number of computational experiments of different sizes are conducted, and compared with solutions generated by NSGA-II. The experimental results show the advantages of the proposed model and method, which error is reduced 14.56%, 15.16% and 15.67%.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Yayue Pan ◽  
Yong Chen ◽  
Zuyao Yu

In micro-stereolithograhy (μSL), high-speed fabrication is a critical challenge due to the long delay time for refreshing resin and retaining printed microfeatures. Thus, the mask-image-projection-based micro-stereolithograhy (MIP-μSL) using the constrained surface technique is investigated in this paper for quickly recoating liquid resin. It was reported in the literature that severe damages frequently happen in the part separation process in the constrained-surface-based MIP-μSL system. To conquer this problem, a single-layer movement separation approach was adopted, and the minimum delay time for refreshing resin was experimentally characterized. The experimental results verify that, compared with the existing MIP-μSL processes, the MIP-μSL process with single-layer movement separation method developed in this paper can build microstructures with complex geometry, with a faster build speed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Yuan Cui ◽  
Shao-kuan Chen ◽  
Jian-feng Liu ◽  
Wen-zheng Jia

Unsuitable locations of bus stops which provide feeder transportation connecting subways near urban intersections usually lead to the low efficiency of public transport and level of passenger service. A multiobjective optimization model to distribute such stop locations is proposed to attain the shortest total walk distance of passengers and minimum delay time of cars through intersections and travel time of buses. The Pareto frontier and optimal solutions for the proposed model are given by the distance-based and enumerative methods. The Xizhimen bus stop is selected to implement case studies for verifying the validity of the proposed model. The analysis of sensitivity on possible solutions is also carried out in the case studies. The results show that the proposed model is capable of optimizing the locations of bus stops connecting subways near intersections and helpful to improve the level of passengers service and operational efficiency of public transportation.


1996 ◽  
Vol 8 (6) ◽  
pp. 516-523
Author(s):  
Michitaka Kameyama ◽  
◽  
Masayuki Sasaki

In intelligent integrated systems such as robotics for autonomous work, it is essential to respond to the change of the environment very quickly. Therefore, the development of special-purpose VLSI processors with minimum delay time becomes a very important subject. A suitable combination of spatially parallel and temporally parallel processing is very important to realize the minimum delay time. In this article, we present a scheduling algorithm for high-level synthesis, where the input to the scheduler is a behavioral description viewed as a data flow graph. The scheduler minimizes the delay time under the constraint of a silicon area and I/O pins.


1996 ◽  
Vol 8 (6) ◽  
pp. 496-499
Author(s):  
Michitaka Kameyama ◽  
◽  
Yoshichika Fujioka ◽  

As one of the next-generation information systems, it is important to construct intelligent integrated systems that have quick response for dynamically changing environment. Therefore, it becomes essential to develop the special purpose VLSI processors which are based on the philosophy ""great reduction of the delay time."" Particularly, we call it robot electronics to develop the special purpose VLSI processors for intelligent robot control. In this article, we will review the fundamental technologies such as pipeline architecture, spacial parallel processing, reconfigurable parallel architecture and high level synthesis of the parallel processor with minimum delay time.


1980 ◽  
Vol 44 (5) ◽  
pp. 937-950 ◽  
Author(s):  
J. Winson

1. In chronically prepared, freely moving rats, electrical stimulation was applied to the perforant pathway and monosynaptic responses were recorded extracellularly in the ipsilateral dentate gyrus. In some tests a stimulus was also applied to the median raphe nucleus (mr) prior to activating the perforant pathway. Experiments were performed during two behavioral conditions: slow-wave sleep (SWS) and the still, alert state (SAL). Two varieties of evoked responses were recorded: those due to synchronous firing of neuronal action potentials (evoked action potentials or EAPs) and those produced by excitatory synaptic activity (evoked synaptic potentials or ESPs). 2. As reported previously (38), perforant path stimulation elicited EAPs of greater magnitude during SWS than during SAL. The application of a prior stimulus to mr (prestimulation) markedly increased the already elevated EAPs observed during SWS. The EAPs during SAL were unaffected by prestimulation. 3. The minimum delay time (time between mr and perforant path stimuli) at which the augmentation of the EAPs appeared during SWS was approximately 5 ms. The augmentation reached a maximum at delay times of 25-40 ms and was present up to a delay time of 150 ms. 4. As in former experiments (38), ESPs recorded in the molecular layer of the dentate gyrus after perforant path stimulation were found to be greater during SAL than during SWS. Prestimulation of mr had no significant effect on the ESPs at any level of the molecular layer during either SWS or SAL. 5. The perforant path afferent volley was recorded at high gain in the dentate gyrus. Its amplitude was found to be solely dependent on perforant path stimulus intensity and not on behavioral state or the prestimulation of mr. 6. In preparations anesthetized with Chloropent (82% chloral hydrate, 18% pentobarbital; Fort Dodge Laboratories, Fort Dodge, IA), prestimulation was applied at each of a number of loci within the pons and medulla, including mr, As in SWS, prestimulating mr resulted in augmented EAPs with a minimum delay time of 5 ms. Similar augmented responses were observed when stimulation was applied at other raphe nuclei (dorsal raphe, pontis, magnus, and pallidus), but there was no augmentation when stimulation was applied at other brain stem sites. Threshold stimulus intensities for producing augmented EAPs in the raphe nuclei were less than 30 microA. 7. In freely moving animals it was first established that the EAP responses during SWS were markedly greater than during SAL. Midline lesions were then made at the rostrocaudal level of mr. Following the lesions, there was no longer any significant difference in the magnitude of the EAPs recorded during the two behaviors. 8. These findings suggest that tonic influences arising from raphe nuclei during SWS may be involved in the facilitation of neuronal transmission through the dentate gyrus observed during this behavioral state.


Sign in / Sign up

Export Citation Format

Share Document