cell transplantation therapy
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 22 (16) ◽  
pp. 9047
Author(s):  
Kaneyasu Nishimura ◽  
Kazuyuki Takata

Cell transplantation therapy using pluripotent/multipotent stem cells has gained attention as a novel therapeutic strategy for treating neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, ischemic stroke, and spinal cord injury. To fully realize the potential of cell transplantation therapy, new therapeutic options that increase cell engraftments must be developed, either through modifications to the grafted cells themselves or through changes in the microenvironment surrounding the grafted region. Together these developments could potentially restore lost neuronal function by better supporting grafted cells. In addition, drug administration can improve the outcome of cell transplantation therapy through better accessibility and delivery to the target region following cell transplantation. Here we introduce examples of drug repurposing approaches for more successful transplantation therapies based on preclinical experiments with clinically approved drugs. Drug repurposing is an advantageous drug development strategy because drugs that have already been clinically approved can be repurposed to treat other diseases faster and at lower cost. Therefore, drug repurposing is a reasonable approach to enhance the outcomes of cell transplantation therapies for neurological diseases. Ideal repurposing candidates would result in more efficient cell transplantation therapies and provide a new and beneficial therapeutic combination.


2021 ◽  
Vol 22 (15) ◽  
pp. 8148
Author(s):  
Aline Yen Ling Wang

Modified mRNA (modRNA)-based somatic reprogramming is an effective and safe approach that overcomes the genomic mutation risk caused by viral integrative methods. It has improved the disadvantages of conventional mRNA and has better stability and immunogenicity. The modRNA molecules encoding multiple pluripotent factors have been applied successfully in reprogramming somatic cells such as fibroblasts, mesenchymal stem cells, and amniotic fluid stem cells to generate pluripotent stem cells (iPSCs). Moreover, it also can be directly used in the terminal differentiation of stem cells and fibroblasts into functional therapeutic cells, which exhibit great promise in disease modeling, drug screening, cell transplantation therapy, and regenerative medicine. In this review, we summarized the reprogramming applications of modified mRNA in iPSC generation and therapeutic applications of functionally differentiated cells.


2021 ◽  
Vol 15 (1) ◽  
pp. 3-18
Author(s):  
Sahar Shafiee ◽  
Maryam Heidarpour ◽  
Sima Sabbagh ◽  
Elham Amini ◽  
Hanieh Saffari ◽  
...  

AbstractDiabetes mellitus is a chronic metabolic disease associated with high cardiovascular risk. A vascular complication of diabetes is foot ulcers. Diabetic foot ulcers are prevalent and substantially reduce the quality of life of patients who have them. Currently, diabetic foot ulcer is a major problem for wound care specialists, and its treatment requires considerable health care resources. So far, various therapeutic modalities have been proposed to treat diabetic foot ulcers and one of them is stem cell-based therapy. Stem cell-based therapy has shown great promise for the treatment of diabetic foot ulcers. This strategy has been shown to be safe and effective in both preclinical and clinical trials. In this review, we provide an overview of the stem cell types and possible beneficial effects of stem cell transplantation therapy for diabetic foot ulcers, and an overview of the current status of stem cell research in both preclinical and clinical trial stages of treatment strategies for diabetic foot ulcers.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ashok Chakraborty

Background: Dementia is a cognitive degenerative disease generally associated with Alzheimer disease, but victims with Parkinson’s disease also develops dementia at the latter stage. Dementia associates with irreversible loss of memory, and no medicinal cure is yet available. We here put some light on possible cell therapy for dementia. Aim: Neural stem cells are multipotent cells which are capable of self-replication and differentiation into neurons, astrocytes or oligodendrocytes in the central nervous system. They produce Dopamine, neural factors, and therefore, one can expect that NSC transplantation can ultimately provide a better therapeutic approach in the treatment of dementia as well as Parkinson’s disease (PD). Methods: We discussed the merits and demerits of using hNSCs cells over other possible candidate cells. Results: As we found that hNSCs can secrete Dopamine as well as some neurotropic factors, like Brain-Derived Neurotropic Factor (BDNF) and Glial cell-Derived Neurotropic Factors (GDNF) which can support the proliferation of hNSCS and its Dopamine production ability, hNSCs can supply dopamine and also can stop α-synuclein aggregation. Conclusion: hNSCs, therefore, could be a better cell regiment for cell transplantation therapy for dementia as well as PD.


2020 ◽  
pp. 519-540
Author(s):  
Chenxia Hu ◽  
Jiong Yu ◽  
Hongcui Cao ◽  
Jun Li

2020 ◽  
Vol 21 (19) ◽  
pp. 7301 ◽  
Author(s):  
Kamila Raziyeva ◽  
Aiganym Smagulova ◽  
Yevgeniy Kim ◽  
Saltanat Smagul ◽  
Ayan Nurkesh ◽  
...  

Ischemic heart disease and myocardial infarction remain leading causes of mortality worldwide. Existing myocardial infarction treatments are incapable of fully repairing and regenerating the infarcted myocardium. Stem cell transplantation therapy has demonstrated promising results in improving heart function following myocardial infarction. However, poor cell survival and low engraftment at the harsh and hostile environment at the site of infarction limit the regeneration potential of stem cells. Preconditioning with various physical and chemical factors, as well as genetic modification and cellular reprogramming, are strategies that could potentially optimize stem cell transplantation therapy for clinical application. In this review, we discuss the most up-to-date findings related to utilizing preconditioned stem cells for myocardial infarction treatment, focusing mainly on preconditioning with hypoxia, growth factors, drugs, and biological agents. Furthermore, genetic manipulations on stem cells, such as the overexpression of specific proteins, regulation of microRNAs, and cellular reprogramming to improve their efficiency in myocardial infarction treatment, are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document