solute absorption
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 1)

H-INDEX

14
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Victoria Fernández ◽  
Eustaquio Gil‐Pelegrín ◽  
Thomas Eichert
Keyword(s):  

2017 ◽  
Vol 816 ◽  
Author(s):  
Ehud Yariv

Because of the associated far-field logarithmic divergence, the transport problem governing two-dimensional phoretic self-propulsion lacks a steady solution when the Péclet number $\mathit{Pe}$ vanishes. This indeterminacy, which has no counterpart in three dimensions, is remedied by introducing a non-zero value of $\mathit{Pe}$, however small. We consider that problem employing a first-order kinetic model of solute absorption, where the ratio of the characteristic magnitudes of reaction and diffusion is quantified by the Damköhler number $\mathit{Da}$. As $\mathit{Pe}\rightarrow 0$ the dominance of diffusion breaks down at distances that scale inversely with $\mathit{Pe}$; at these distances, the leading-order transport represents a two-dimensional point source in a uniform stream. Asymptotic matching between the latter region and the diffusion-dominated near-particle region provides the leading-order particle velocity as an implicit function of $\log \mathit{Pe}$. Another scenario involving weak advection takes place under strong reactions, where $\mathit{Pe}$ and $\mathit{Da}$ are large and comparable. In that limit, the breakdown of diffusive dominance occurs at distances that scale as $\mathit{Da}^{2}/\mathit{Pe}$.


2016 ◽  
Vol 812 ◽  
pp. 26-40 ◽  
Author(s):  
Ehud Yariv

When suspended in a liquid solution, chemically active colloids may self-propel due to an asymmetry in either particle shape or the interfacial distribution of solute absorption. We here consider a chemically homogeneous spherical particle which undergoes self-diffusiophoresis due to the presence of nearby inert wall. In particular, we focus upon the near-contact limit where it was recently observed (Yariv, Phys. Rev. Fluids, vol. 1 (3), 2016, 032101) that the solute-concentration profile within the narrow gap separating the particle and the wall cannot be uniquely determined by a gap-scale analysis. We here revisit this near-contact limit using matched asymptotic expansions, the inner region being the gap domain and the outer region being on the particle scale. Asymptotic matching with the Hankel-transform representation of the outer distribution of solute concentration serves to determine both the scaling and magnitude of the corresponding inner profile. The ensuing gap-scale pressure field, set by a lubrication mechanism, gives rise to an anomalous particle–wall interaction, scaling as an irrational power of the gap clearance.


2010 ◽  
Vol 20 (5) ◽  
pp. 427-442 ◽  
Author(s):  
Xiaocai Shi ◽  
Dennis H. Passe

The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate- electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.


2006 ◽  
Vol 95 (6) ◽  
pp. 1193-1198 ◽  
Author(s):  
Jeroen L. Kiers ◽  
M.J. Robert Nout ◽  
Frans M. Rombouts ◽  
Esther E. van Andel ◽  
Marius J.A. Nabuurs ◽  
...  

Infectious diarrhoea is a major problem in both children and piglets. Infection of enterotoxigenic Escherichia coli (ETEC) results in fluid secretion and electrolyte losses in the small intestine. In the present study the effect of processed and fermented soyabean products on net absorption during ETEC infection was investigated. Soyabean was processed into an autoclaved, a cooked and a mould-fermented (tempeh) product. The soyabean products were pre-digested and the effect of the products on net absorption in the small intestineof piglets was studied. Pairs of small-intestinal segments, one non-infected and the other ETEC-infected, were perfused simultaneously with the different products during 8h. Net absorption of fluid, DM, Na, chloride, K and total solutes was determined. Net fluid absorption washighest for cooked soyabean followed by autoclaved soyabean and tempeh as a result of the osmolality of these products. In ETEC-infected segments, cooked soyabean and tempeh showed minor fluid losses (27 (se 23) and 43 (se 20) μl/cm2, respectively) compared with the saline control (260 (se 23) μl/cm2). Tempeh resulted in a high uptake of solutes. Processed soyabean products, particularly cooked soyabean and tempeh, are beneficial in maintaining fluid balance during ETEC infection. Additionally, tempeh showed high DM and total solute absorption. Therefore, particularly, tempeh may bebeneficial in the case of post-weaning diarrhoeain piglets and possibly in children as well.


2006 ◽  
Vol 20 (5) ◽  
Author(s):  
William H Karasov ◽  
Todd J McWhorter ◽  
Enrique Caviedes‐Vidal
Keyword(s):  

2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Todd Jason McWhorter ◽  
William H Karasov
Keyword(s):  

2005 ◽  
Vol 15 (3) ◽  
pp. 220-235 ◽  
Author(s):  
Jennifer Rogers ◽  
Robert W. Summers ◽  
G. Patrick Lambert

The purpose of this study was to determine if lowering carbohydrate (CHO) concentration in a sport drink influences gastric emptying, intestinal absorption, or performance during cycle ergometry (85 min, 60% VO2peak). Five subjects (25 ± 1 y, 61.5 ± 2.1 mL · kg−1 · min−1 VO2peak) ingested a 3% CHO, 6% CHO, or a water placebo (WP) beverage during exercise. Gastric emptying was determined by repeated double sampling and intestinal absorption by segmental perfusion. Total solute absorption and plasma glucose was greater for 6% CHO; however, neither gastric emptying, intestinal water absorption, or 3-mi time trial performance (7:58 ± 0:33 min, 8:13 ± 0:25 min, and 8:25 ± 0:29 min, respectively, for 6% CHO, 3% CHO, and WP) differed among solutions. These results indicate lowering the CHO concentration of a sport drink from 6% CHO does not enhance gastric emptying, intestinal water absorption, or time trial performance, but reduces CHO and total solute absorption.


Sign in / Sign up

Export Citation Format

Share Document