integrate solution
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1466
Author(s):  
Tamr B. Atieh ◽  
Jonathan Roth ◽  
Xue Yang ◽  
Cody L. Hoop ◽  
Jean Baum

Glycation of α-synuclein (αSyn), as occurs with aging, has been linked to the progression of Parkinson’s disease (PD) through the promotion of advanced glycation end-products and the formation of toxic oligomers that cannot be properly cleared from neurons. DJ-1, an antioxidative protein that plays a critical role in PD pathology, has been proposed to repair glycation in proteins, yet a mechanism has not been elucidated. In this study, we integrate solution nuclear magnetic resonance (NMR) spectroscopy and liquid atomic force microscopy (AFM) techniques to characterize glycated N-terminally acetylated-αSyn (glyc-ac-αSyn) and its interaction with DJ-1. Glycation of ac-αSyn by methylglyoxal increases oligomer formation, as visualized by AFM in solution, resulting in decreased dynamics of the monomer amide backbone around the Lys residues, as measured using NMR. Upon addition of DJ-1, this NMR signature of glyc-ac-αSyn monomers reverts to a native ac-αSyn-like character. This phenomenon is reversible upon removal of DJ-1 from the solution. Using relaxation-based NMR, we have identified the binding site on DJ-1 for glycated and native ac-αSyn as the catalytic pocket and established that the oxidation state of the catalytic cysteine is imperative for binding. Based on our results, we propose a novel mechanism by which DJ-1 scavenges glyc-ac-αSyn oligomers without chemical deglycation, suppresses glyc-ac-αSyn monomer–oligomer interactions, and releases free glyc-ac-αSyn monomers in solution. The interference of DJ-1 with ac-αSyn oligomers may promote free ac-αSyn monomer in solution and suppress the propagation of toxic oligomer and fibril species. These results expand the understanding of the role of DJ-1 in PD pathology by acting as a scavenger for aggregated αSyn.


2021 ◽  
Vol 7 (17) ◽  
pp. eabf6106
Author(s):  
Weiwei He ◽  
Yen-Lin Chen ◽  
Lois Pollack ◽  
Serdal Kirmizialtin

Double-stranded DNA (dsDNA) and RNA (dsRNA) helices display an unusual structural diversity. Some structural variations are linked to sequence and may serve as signaling units for protein-binding partners. Therefore, elucidating the mechanisms and factors that modulate these variations is of fundamental importance. While the structural diversity of dsDNA has been extensively studied, similar studies have not been performed for dsRNA. Because of the increasing awareness of RNA’s diverse biological roles, such studies are timely and increasingly important. We integrate solution x-ray scattering at wide angles (WAXS) with all-atom molecular dynamics simulations to explore the conformational ensemble of duplex topologies for different sequences and salt conditions. These tightly coordinated studies identify robust correlations between features in the WAXS profiles and duplex geometry and enable atomic-level insights into the structural diversity of DNA and RNA duplexes. Notably, dsRNA displays a marked sensitivity to the valence and identity of its associated cations.


Author(s):  
Han Zhang ◽  
Fu Li

The traditional solution of the coupled neutronics/ thermal-hydraulics problems has typically been performed by solving the individual field separately and then transferring information between each other. In this paper, full implicit integrate solution to the coupled neutronics/ thermal-hydraulic problem is investigated. There are two advantages compared with the traditional method, which are high temporal accuracy and stability. The five equations of single-phase flow, the solid heat conduction and the neutronics are employed as a simplified model of a nuclear reactor core. All these field equations are solved together in a tightly coupled, nonlinear fashion. Firstly, Newton-based method is employed to solve nonlinear systems due to its local second-order convergence rate. And then the Krylov iterative method is used to solve the linear systems which are from the Newton linearization. The two procedures above are the so-called Newton-Krylov method. Furthermore, in order to improve the performance of the Krylov method, physics-based preconditioner is employed, which is constructed by the physical insight. Finally, several Newton-Krylov solution approaches are carried out to compare the performance of the coupled neutronics / thermal-hydraulic equations.


Sign in / Sign up

Export Citation Format

Share Document