solution nuclear magnetic resonance
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 17)

H-INDEX

25
(FIVE YEARS 3)

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 860
Author(s):  
Meerakhan Pathan ◽  
Junfang Wu ◽  
Hans-Åke Lakso ◽  
Lars Forsgren ◽  
Anders Öhman

Differentiating between Parkinson’s disease (PD) and the atypical Parkinsonian disorders of multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) is difficult clinically due to overlapping symptomatology, especially at early disease stages. Consequently, there is a need to identify metabolic markers for these diseases and to develop them into viable biomarkers. In the present investigation, solution nuclear magnetic resonance and mass spectrometry metabolomics were used to quantitatively characterize the plasma metabolomes (a total of 167 metabolites) of a cohort of 94 individuals comprising 34 PD, 12 MSA, and 17 PSP patients, as well as 31 control subjects. The distinct and statistically significant differences observed in the metabolite concentrations of the different disease and control groups enabled the identification of potential plasma metabolite markers of each disorder and enabled the differentiation between the disorders. These group-specific differences further implicate disturbances in specific metabolic pathways. The two metabolites, formic acid and succinate, were altered similarly in all three disease groups when compared to the control group, where a reduced level of formic acid suggested an effect on pyruvate metabolism, methane metabolism, and/or the kynurenine pathway, and an increased succinate level suggested an effect on the citric acid cycle and mitochondrial dysfunction.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1466
Author(s):  
Tamr B. Atieh ◽  
Jonathan Roth ◽  
Xue Yang ◽  
Cody L. Hoop ◽  
Jean Baum

Glycation of α-synuclein (αSyn), as occurs with aging, has been linked to the progression of Parkinson’s disease (PD) through the promotion of advanced glycation end-products and the formation of toxic oligomers that cannot be properly cleared from neurons. DJ-1, an antioxidative protein that plays a critical role in PD pathology, has been proposed to repair glycation in proteins, yet a mechanism has not been elucidated. In this study, we integrate solution nuclear magnetic resonance (NMR) spectroscopy and liquid atomic force microscopy (AFM) techniques to characterize glycated N-terminally acetylated-αSyn (glyc-ac-αSyn) and its interaction with DJ-1. Glycation of ac-αSyn by methylglyoxal increases oligomer formation, as visualized by AFM in solution, resulting in decreased dynamics of the monomer amide backbone around the Lys residues, as measured using NMR. Upon addition of DJ-1, this NMR signature of glyc-ac-αSyn monomers reverts to a native ac-αSyn-like character. This phenomenon is reversible upon removal of DJ-1 from the solution. Using relaxation-based NMR, we have identified the binding site on DJ-1 for glycated and native ac-αSyn as the catalytic pocket and established that the oxidation state of the catalytic cysteine is imperative for binding. Based on our results, we propose a novel mechanism by which DJ-1 scavenges glyc-ac-αSyn oligomers without chemical deglycation, suppresses glyc-ac-αSyn monomer–oligomer interactions, and releases free glyc-ac-αSyn monomers in solution. The interference of DJ-1 with ac-αSyn oligomers may promote free ac-αSyn monomer in solution and suppress the propagation of toxic oligomer and fibril species. These results expand the understanding of the role of DJ-1 in PD pathology by acting as a scavenger for aggregated αSyn.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joanna Xiuzhu Xu ◽  
Nicholas C. Fitzkee

The spontaneous formation of a protein corona on a nanoparticle surface influences the physiological success or failure of the synthetic nanoparticle as a drug carrier or imaging agent used in vivo. A quantitative understanding of protein-nanoparticle interactions is therefore critical for the development of nanoparticle-based therapeutics. In this perspective, we briefly discuss the challenges and limitations of current approaches used for studying protein-nanoparticle binding in a realistic biological medium. Subsequently, we demonstrate that solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to monitor protein competitive binding in a complex serum medium in situ. Importantly, when many serum proteins are competing for a gold nanoparticle (AuNP) surface, solution NMR is able to detect differences in binding thermodynamics, and kinetics of a tagged protein. Combined with other experimental approaches, solution NMR is an invaluable tool to understand protein behavior in the nanoparticle corona.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 576
Author(s):  
Li Shi ◽  
Naixia Zhang

During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 2974
Author(s):  
Qingxin Li ◽  
CongBao Kang

Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.


2020 ◽  
Vol 13 (625) ◽  
pp. eaaz0344 ◽  
Author(s):  
Benjamin M. M. Grant ◽  
Masahiro Enomoto ◽  
Sung-In Back ◽  
Ki-Young Lee ◽  
Teklab Gebregiworgis ◽  
...  

KRAS4b is a small guanosine triphosphatase (GTPase) protein that regulates several signal transduction pathways that underlie cell proliferation, differentiation, and survival. KRAS4b function requires prenylation of its C terminus and recruitment to the plasma membrane, where KRAS4b activates effector proteins including the RAF family of kinases. The Ca2+-sensing protein calmodulin (CaM) has been suggested to regulate the localization of KRAS4b through direct, Ca2+-dependent interaction, but how CaM and KRAS4b functionally interact is controversial. Here, we determined a crystal structure, which was supported by solution nuclear magnetic resonance (NMR), that revealed the sequestration of the prenyl moiety of KRAS4b in the hydrophobic pocket of the C-terminal lobe of Ca2+-bound CaM. Our engineered fluorescence resonance energy transfer (FRET)–based biosensor probes (CaMeRAS) showed that, upon stimulation of Ca2+ influx by extracellular ligands, KRAS4b reversibly translocated in a Ca2+-CaM–dependent manner from the plasma membrane to the cytoplasm in live HeLa and HEK293 cells. These results reveal a mechanism underlying the inhibition of KRAS4b activity by Ca2+ signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document