electrochemically active surface
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Toshiki Tanaka ◽  
Makoto Uchida ◽  
Kenji Miyatake

Sulfonated polyphenylene ionomer (SPP-QP) was used as a catalyst layer binder in polymer electrolyte fuel cells. SPP-QP functioned well in the proton-conducting thin layers to show high electrochemically active surface...


2021 ◽  
Vol 30 (4) ◽  
pp. 36-37
Author(s):  
Ali Othman

Recent advances in electrochemical biosensors have focused on new materials and strategies to improve specificity, sensitivity, stability, and response time. Herein, we aim to develop an electrochemical biosensor device by modification of a screen-printed electrode (SPE) with highly porous Au nanostructures and a bioluminescence (BL)-producing enzyme (luciferase). This approach leverages the enhanced electrochemically active surface area and the mass transport effect and offers an alternative configuration for optical output from the enzyme. The BL presents an instantaneous measurement of enzyme activity and can be exploited to show that the enzyme is being electrochemically controlled (an ON-OFF switchable sensor).


2021 ◽  
Vol 22 (11) ◽  
pp. 5477
Author(s):  
Semyon Mareev ◽  
Ekaterina Skolotneva ◽  
Marc Cretin ◽  
Victor Nikonenko

The use of reactive electrochemical membranes (REM) in flow-through mode during the anodic oxidation of organic compounds makes it possible to overcome the limitations of plate anodes: in the case of REM, the area of the electrochemically active surface is several orders of magnitude larger, and the delivery of organic compounds to the reaction zone is controlled by convective flow rather than diffusion. The main problem with REM is the formation of fouling and gas bubbles in the pores, which leads to a decrease in the efficiency of the process because the hydraulic resistance increases and the electrochemically active surface is shielded. This work aims to study the processes underlying the reduction in the efficiency of anodic oxidation, and in particular the formation of gas bubbles and the recharge of the REM pore surface at a current density exceeding the limiting kinetic value. We propose a simple one-dimensional non-stationary model of the transport of diluted species during the anodic oxidation of paracetamol using REM to describe the above effects. The processing of the experimental data was carried out. It was found that the absolute value of the zeta potential of the pore surface decreases with time, which leads to a decrease in the permeate flux due to a reduction in the electroosmotic flow. It was shown that in the solution that does not contain organic components, gas bubbles form faster and occupy a larger pore fraction than in the case of the presence of paracetamol; with an increase in the paracetamol concentration, the gas fraction decreases. This behavior is due to a decrease in the generation of oxygen during the recombination reaction of the hydroxyl radicals, which are consumed in the oxidation reaction of the organic compounds. Because the presence of bubbles increases the hydraulic resistance, the residence time of paracetamol—and consequently its degradation degree—increases, but the productivity goes down. The model has predictive power and, after simple calibration, can be used to predict the performance of REM anodic oxidation systems.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 342
Author(s):  
Raminta Stagniūnaitė ◽  
Virginija Kepenienė ◽  
Aldona Balčiūnaitė ◽  
Audrius Drabavičius ◽  
Vidas Pakštas ◽  
...  

This paper describes the investigation of electrocatalytic activity of the AuCeO2/C catalyst, prepared using the microwave irradiation method, towards the oxidation of sodium borohydride and oxygen reduction reactions in an alkaline medium. It was found that the obtained AuCeO2/C catalyst with Au loading and electrochemically active surface area of Au nanoparticles (AuNPs) equal to 71 µg cm−2 and 0.05 cm2, respectively, showed an enhanced electrocatalytic activity towards investigated reactions, compared with the Au/C catalyst with an Au loading and electrochemically active surface area of AuNPs equal to 78 µg cm−2 and 0.19 cm2, respectively. The AuCeO2/C catalyst demonstrated ca. 4.5 times higher current density values for the oxidation of sodium borohydride compared with those of the bare Au/C catalyst. Moreover, the onset potential of the oxygen reduction reaction (0.96 V) on the AuCeO2/C catalyst was similar to the commercial Pt/C (0.98 V).


CrystEngComm ◽  
2021 ◽  
Author(s):  
Lili Yao ◽  
Wenxiu Yang ◽  
Yongjian Niu ◽  
Jiming Liu ◽  
Shun Zhang ◽  
...  

Phosphorus incorporation further boosted the OER activity of cation-doped Co-based spinel oxides via remarkably tuning the oxygen vacancies, crystallinity and electrochemically active surface area on the surface.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yugan Gao ◽  
Chengqi Wu ◽  
Sen Yang ◽  
Yiwei Tan

Abstract The oxygen evolution reaction is an essential factor in many renewable energy technologies, such as water splitting, fuel cells, and metal–air batteries. Here we show a unique solution to improve the oxygen evolution reaction rate by adjusting the electrolyte composition via the introduction of hexadecyltrimethylammonium hydroxide into an alkaline electrolyte. The strong adsorption of hexadecyltrimethylammonium cations on the surface of electrocatalysts provides the increased absolute number of OH− ions near the electrocatalyst surface, which effectively promotes the oxygen evolution reaction performance of electrocatalysts, such as Fe1−yNiyS2@Fe1−xNixOOH microplatelets and SrBaNi2Fe12O22 powders. Meanwhile, we present an electrochemical conditioning approach to engineering the electrochemically active surface area of electrocatalysts, by which the resultant Fe1−yNiyS2@Fe1−xNixOOH microplatelets have a larger electrochemically active surface area after the electrochemical conditioning of the as-synthesized Fe1−yNiyS2 microplatelets using ammonia borane than those obtained after the conventional electrochemical conditioning without ammonia borane, presumably due to the appropriate conversion rate of Fe1−xNixOOH shells.


2020 ◽  
Vol 2 (10) ◽  
pp. 4881-4886
Author(s):  
Cong Shen ◽  
Xuemin Li ◽  
Yajing Wei ◽  
Zhenming Cao ◽  
Huiqi Li ◽  
...  

We successfully synthesized excavated rhombic dodecahedral PtCo NCs using a wet chemical method. This structure and the alloy nature render the PtCo ERD NCs a large electrochemically active surface area and an excellent catalyst for OER and the methanol oxidation reaction.


Sign in / Sign up

Export Citation Format

Share Document