potassic magmatism
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Lukáš Krmíček ◽  
Rolf L Romer ◽  
Martin J Timmerman ◽  
Jaromír Ulrych ◽  
Johannes Glodny ◽  
...  

2021 ◽  
Author(s):  
junyu Li ◽  
shunyun Cao ◽  
Xuemei Cheng ◽  
Haobo Wang ◽  
Wenxuan Li

<p>Adakite‐like potassic rocks are widespread in post-collisional settings and provide potential insights into deep crustal or crust-mantle interaction processes including asthenosphere upwelling, partial melting, lower crustal flow, thickening and collapse of the overthickened orogen. However, petrogenesis and compositional variation of these adakite‐like potassic rocks and their implications are still controversial. Potassic magmatic rocks are abundant developed in the Jinshajiang–Ailaoshan tectono-magmatic belt that stretches from eastern Tibet over western Yunnan to Vietnam. Integrated studies of structure, geochronology, mineral compositions and geochemistry indicate adakite-like potassic rocks with different deformation are exposed along the Ailaoshan-Red River shear zone. The potassic felsic rocks formed by mixing and partial melting between enriched mantle-derived ultrapotassic and thickened ancient crust-derived magmas. The mixing of the mafic and felsic melts and their extended fractional crystallization of plagioclase, K-feldspar, hornblende and biotite gave rise to the potassic magmatic rocks. Zircon geochronology provide chronological markers for emplacement at 35–37 Ma of these adakite-like potassic rocks along the shear zone. Temperature and pressure calculated by amphibole-plagioclase thermobarometry range from 3.5 to 5.9 kbar and 650 to 750 ℃, respectively, and average emplacement depths of ca. 18 km for granodiorite within this suite. In combination with the results of the Cenozoic potassic magmatism in the Jinshajiang–Ailaoshan tectono-magmatic belt, we suggest that in addition to partial melting of the thickened ancient continental crust, magma underplating and subsequent crust-mantle mixing beneath the ancient continental crust have also played an important role in crustal reworking and strongly affected the rheological properties and density of rocks. The exhumation underlines the role of lateral motion of the Ailaoshan-Red River shear zone initiation by potassic magma-assisted rheological weakening and exhumation at high ambient temperatures within the shear zone.</p>


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 337 ◽  
Author(s):  
Ivan F. Chayka ◽  
Alexander V. Sobolev ◽  
Andrey E. Izokh ◽  
Valentina G. Batanova ◽  
Stepan P. Krasheninnikov ◽  
...  

Mesozoic (125–135 Ma) cratonic low-Ti lamproites from the northern part of the Aldan Shield do not conform to typical classification schemes of ultrapotassic anorogenic rocks. Here we investigate their origins by analyzing olivine and olivine-hosted inclusions from the Ryabinoviy pipe, a well preserved lamproite intrusion within the Aldan Shield. Four types of olivine are identified: (1) zoned phenocrysts, (2) high-Mg, high-Ni homogeneous macrocrysts, (3) high-Ca and low-Ni olivine and (4) mantle xenocrysts. Olivine compositions are comparable to those from the Mediterranean Belt lamproites (Olivine-1 and -2), kamafugites (Olivine-3) and leucitites. Homogenized melt inclusions (MIs) within olivine-1 phenocrysts have lamproitic compositions and are similar to the host rocks, whereas kamafugite-like compositions are obtained for melt inclusions within olivine-3. Estimates of redox conditions indicate that “lamproitic” olivine crystallized from anomalously oxidized magma (∆NNO +3 to +4 log units.). Crystallization of “kamafugitic” olivine occurred under even more oxidized conditions, supported by low V/Sc ratios. We consider high-Ca olivine (3) to be a fingerprint of kamafugite-like magmatism, which also occurred during the Mesozoic and slightly preceded lamproitic magmatism. Our preliminary genetic model suggests that low-temperature, extension-triggered melting of mica- and carbonate-rich veined subcontitental lithospheric mantle (SCLM) generated the kamafugite-like melts. This process exhausted carbonate and affected the silicate assemblage of the veins. Subsequent and more extensive melting of the modified SCLM produced volumetrically larger lamproitic magmas. This newly recognized kamafugitic “fingerprint” further highlights similarities between the Aldan Shield potassic province and the Mediterranean Belt, and provides evidence of an overlap between “orogenic” and “anorogenic” varieties of low-Ti potassic magmatism. Moreover, our study also demonstrates that recycled subduction components are not an essential factor in the petrogenesis of low-Ti lamproites, kamafugites and leucitites.


2019 ◽  
Vol 177 ◽  
pp. 76-88 ◽  
Author(s):  
Michael W. Förster ◽  
Dejan Prelević ◽  
Stephan Buhre ◽  
Regina Mertz-Kraus ◽  
Stephen F. Foley

Lithos ◽  
2018 ◽  
Vol 318-319 ◽  
pp. 478-493 ◽  
Author(s):  
Angus Fitzpayne ◽  
Andrea Giuliani ◽  
Janet Hergt ◽  
David Phillips ◽  
Philip Janney

2018 ◽  
Vol 59 (7) ◽  
pp. 1417-1465 ◽  
Author(s):  
Hadi Shafaii Moghadam ◽  
William L Griffin ◽  
Maria Kirchenbaur ◽  
Dieter Garbe-Schönberg ◽  
Mohamed Zakie Khedr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document