submicrocrystalline materials
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 83 (3) ◽  
pp. 276-284
Author(s):  
A.S. Pupynin ◽  
S.V. Kirikov ◽  
V.N. Perevezentsev

The conditions of diffusional cavity nucleation in submicrocrystalline materials processed by the methods of intensive plastic deformation (equal-channel angular pressing, multiaxial forging, high pressure torsion, etc.) are analyzed. To date, the question of the mechanism of nucleation of cavities in such materials remains debatable due to the fact that the processing of materials by the methods of intensive plastic deformation is carried out at high hydrostatic pressures that prevent the appearance of pores. The possibility of diffusive nucleation of nanopores in the region of triple junctions of grains containing negative strain-induced wedge disclinations, generating high tensile stresses in the vicinity of triple junctions, comparable in magnitude to external hydrostatic pressure, is shown. Such junction disclinations inevitably occur at the grain junctions due to the heterogeneity of the plastic deformation through the ensemble of polycrystal grains. It is shown that an important condition for the nucleation of cavities is not only the presence of high internal tensile stresses from junction disclinations, but also an extremely high concentration of nonequilibrium strain-induced vacancies characteristic of submicrocrystalline metals, comparable in values to the vacancy concentration, at temperatures close to solidus. The influence of the strength of junction disclinations, the value of external hydrostatic pressure and the degree of supersaturation of the material by nonequilibriumstrain-induced vacancies on the rate of diffusional nucleation and the volume of critical pore nuclei is analyzed. It is established that in order to effectively suppress the process of pore formation in the grain boundary triple junctions, it is necessary to apply an external hydrostatic pressure that compensates for internal elastic fields from junction disclinations.


Author(s):  
В.Н. Перевезенцев ◽  
А.C. Пупынин

A model decribed the nucleation of grain boundary nanopores in submicrocrystalline materials in the process of intensive plastic deformation is proposed. The effect of internal stress fields from planar mesodefects, external hydrostatic pressure and level of supersaturation of the material by nonequilibrium deformation-induced vacancies on the nucleation rate of nanopores is analyzed.


2018 ◽  
Vol 63 (10) ◽  
pp. 1492-1496 ◽  
Author(s):  
V. N. Perevezentsev ◽  
A. S. Pupynin ◽  
A. E. Ogorodnikov

2011 ◽  
Vol 674 ◽  
pp. 97-103 ◽  
Author(s):  
Henryk Dybiec ◽  
Maciej Motyka

Light weight nano/submicrocrystalline materials are promising group of constructional materials combining low density with high mechanical properties. However, their potential application requires extensive testing of functional properties, e.g. tribological ones, which may be significant and determine their practical use. Available information on abrasive wear and friction coefficients in nano/submicrocrystalline materials is rather poor. Therefore the aim of this paper is to fill the gap in the literature in this field. The AlSi12Fe5Cu3Mg alloy (RS422) produced by rapid solidification and plastic consolidation with grain size of basic phase components in the range from 50 nm to 300 nm was examined. Microstructure and mechanical properties of the materials were determined. Abrasive wear tests, static and kinematics friction coefficients measurement were carried out under the surface condition including dry, wet and oil lubricant. The results have been compared to the values of similar quantities determined in the same conditions for conventionally produced alloy AlSi11FeCuMn (AK11). Substantial increase of friction coefficients for RS442 comparing to AlSi11FeCuMn material was found, however, abrasive wear for nano/submicron grained materials were low in comparison to conventional one. Considerable increase of abrasive wear at water presence and very weak attrition at oil lubrication was observed. Relationship between structure and mechanical properties of tested materials was analyzed.


2007 ◽  
Vol 550 ◽  
pp. 465-470 ◽  
Author(s):  
A.N. Aleshin ◽  
Alex M. Arsenkin ◽  
Sergey V. Dobatkin

The paper is devoted to the problem of thermal stability of ultra-fine grained (submicrocrystalline) materials prepared by severe plastic deformation. A basis of the paper lies in a fact that there is practically no grain growth in submicrocrystalline materials when annealing temperature is less than 0.35Tm. Reasons of high thermal stability of submicrocrystalline materials at low temperatures are widely discussed in literature. One of them is the affect of triple junction drag on grain boundaries motion. During annealing at a low temperature triple junction drag controls microstructure evolution in submicrocrystalline materials, and this phenomenon can be used to improve their thermal stability at high temperatures. The aim of this paper is to investigate grain growth kinetics in a two-step regime, low temperature and high temperature annealing. The experiments on grain growth were performed in submicrocrystalline Armco-iron fabricated by high pressure torsion. It is established that long-time low temperature pre-annealing reduces the grain growth rate in following high temperature annealing by a factor greater than two.


Sign in / Sign up

Export Citation Format

Share Document