Influence of Grain Refining on Abrasive Wear of Submicrocrystalline Al-Si Alloys

2011 ◽  
Vol 674 ◽  
pp. 97-103 ◽  
Author(s):  
Henryk Dybiec ◽  
Maciej Motyka

Light weight nano/submicrocrystalline materials are promising group of constructional materials combining low density with high mechanical properties. However, their potential application requires extensive testing of functional properties, e.g. tribological ones, which may be significant and determine their practical use. Available information on abrasive wear and friction coefficients in nano/submicrocrystalline materials is rather poor. Therefore the aim of this paper is to fill the gap in the literature in this field. The AlSi12Fe5Cu3Mg alloy (RS422) produced by rapid solidification and plastic consolidation with grain size of basic phase components in the range from 50 nm to 300 nm was examined. Microstructure and mechanical properties of the materials were determined. Abrasive wear tests, static and kinematics friction coefficients measurement were carried out under the surface condition including dry, wet and oil lubricant. The results have been compared to the values of similar quantities determined in the same conditions for conventionally produced alloy AlSi11FeCuMn (AK11). Substantial increase of friction coefficients for RS442 comparing to AlSi11FeCuMn material was found, however, abrasive wear for nano/submicron grained materials were low in comparison to conventional one. Considerable increase of abrasive wear at water presence and very weak attrition at oil lubrication was observed. Relationship between structure and mechanical properties of tested materials was analyzed.

2010 ◽  
Vol 44 (21) ◽  
pp. 2509-2519 ◽  
Author(s):  
B. Suresha ◽  
B.N. Ramesh ◽  
K.M. Subbaya ◽  
G. Chandramohan

Fiber and particulate reinforced polymeric composites are known to possess high strength and attractive wear resistance in dry sliding conditions. Though the reinforcement and/filler type are known to control the properties, less is known about their tribo performance especially with graphite as filler material. How these composites perform in abrasive wear situations needs a proper understanding. Hence, the present investigation reports on the mechanical and three-body abrasive wear behavior of carbon fabric reinforced epoxy (C-E) and silane treated graphite filled C-E (Gr-C-E) composites. The mechanical properties were evaluated using Universal testing machine. In three-body wear tests, quartz particles of size 150-200 μm were used as dry and loose abrasives. Three-body abrasive wear tests were conducted using rubber wheel abrasion tester under different loads/abrading distances. The results showed that the wear volume increased with increasing abrading distance and the specific wear rate decreased with abrading distance/load and depends on filler loading. However, the presence of silane treated graphite filler in C-E showed a promising trend. Further, the abrasive wear volume of composites has been correlated with mechanical properties such as hardness, tensile strength and percentage elongation. The worn surface features, when examined through scanning electron microscopy, showed more number of broken carbon fibers in C-E compared to graphite filled C-E composites.


2021 ◽  
Vol 12 (4) ◽  
pp. 1100-1103
Author(s):  
V. Yu. Senichev ◽  
E. V. Pogorel’tsev ◽  
A. I. Slobodinyuk ◽  
M. A. Makarova

2021 ◽  
Vol 316 ◽  
pp. 893-898
Author(s):  
Natalya Gabelchenko ◽  
Artem Belov ◽  
Artem Kravchenko ◽  
Oleg Kryuchkov

We conducted comparative tests of the wear resistance of metals operating under abrasive conditions. Samples were cut from the working parts of mixer-pneumosuperchargers. The chemical composition and mechanical properties were determined. To compare samples under abrasive wear conditions, we designed and assembled a carousel installation. The principle of its operation is based on mixing the abrasive medium by the samples being studied with a given speed. Wear resistance was evaluated by weight loss by samples after several test cycles. To determine changes in the structure of the metal during abrasive wear, metallographic studies of the samples were carried out before and after the tests. It is shown that the best complex of service and mechanical properties is possessed by 110G13L steel.


2016 ◽  
Vol 24 (05) ◽  
pp. 1750061
Author(s):  
Yu ZHANG ◽  
YAN-WEI ZHAO ◽  
NAN XIANG ◽  
REN-GUO SONG

In the present study, microarc oxidation (MAO) coatings were formed on ZL101A aluminum alloy in an electrolytic bath containing 3[Formula: see text]g/L KOH [Formula: see text] 2[Formula: see text]g/L Na2WO[Formula: see text] 4[Formula: see text]g/L KF. The morphology and wearing behavior were investigated. In both electrolytes, the additives were borates (Na2B4O718[Formula: see text]g/L) and silicates (Na2SiO3 18[Formula: see text]g/L), respectively. It was found that the coating formed in borates-containing electrolyte was of compact and smooth structure than that of the one formed in silicates-containing electrolyte at the optimum treatment time. It was found that all the coatings were composed of á-Al2O3 and ã-Al2O3. The microhardness and wear tests proved that the coating formed in borates-containing electrolyte was having better mechanical properties than those of the coating formed in silicates-containing electrolyte.


2020 ◽  
pp. 132-138
Author(s):  
S.G. Rudenkyi ◽  
V.I. Zmij ◽  
N.F. Kartzev ◽  
A.A. Korneev ◽  
A.V. Kunchenko ◽  
...  

In the work, the surface of samples made of 25X1MF steel was saturated with chromium. For this, the method of vacuum activated diffusion chromium plating was used. In this process, sodium chloride was used as an activator. It was found that vacuum activated diffusion chromium plating of samples made of 25Kh1MF steel leads to the formation of a surface layer containing from 87 to 97 wt.% of this element. It was found that an increase in the temperature of the process and its duration leads to an increase in the chromium content on the surface of the samples. The tests showed that in the case of cavitations-erosion effects on the surface of chrome-plated samples of steel 25X1MF they have higher resistance. With abrasive wear, the resistance of the chrome-plated steel surface is 1.8 to 3 times higher compared to untreated material.


2018 ◽  
Vol 55 (3) ◽  
pp. 442-446
Author(s):  
Carmen Penelopi Papadatu ◽  
Andrei Victor Sandu ◽  
Marian Bordei ◽  
Ioan Gabriel Sandu ◽  
Sorin Ciortan

The article focuses on the behavior of the non-conventional treated alloyed steel in magnetic field, during the dry wear tests. It is a review of the experimental tests from last years. The thermo-magnetic treatments have been applied before the application of a thermo-chemical treatment in plasma based on diffusion process. The study was made in order to improve the mechanical properties of the alloyed steel during the friction wear. Thermo-magnetic treatment applied before the plasma nitro-carburizing treatment improves the mechanical properties of the material especially in this case, for a steel that has a considerable content of Chromium (1.02%). The behavior was studied using X-Ray diffractometry of the superficial layers during the dry friction of wear process. The wear tests used an Amsler machine, during three hours of wear tests. After each hour of the wear tests the samples have been analyzed. The diffractometric characteristics of the superficial layers obtained after a complex array of thermo-magnetic and thermo-chemical in plasma treatments, the phases distribution, the content of the superficial layers and the behavior of the steel during the wear through dry friction tests, have been considered as criteria.


2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


Sign in / Sign up

Export Citation Format

Share Document