iron reductase
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 5)

H-INDEX

17
(FIVE YEARS 3)

Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 96
Author(s):  
Hamed A. Abosharaf ◽  
Yuki Sakamoto ◽  
Aliaa M. Radwan ◽  
Keisuke Yuzu ◽  
Mika Fujimura ◽  
...  

Among seven homologs of cytochrome b561 in a model organism C. elegans, Cecytb-2 was confirmed to be expressed in digestive organs and was considered as a homolog of human Dcytb functioning as a ferric reductase. Cecytb-2 protein was expressed in Pichia pastoris cells, purified, and reconstituted into a phospholipid bilayer nanodisc. The reconstituted Cecytb-2 in nanodisc environments was extremely stable and more reducible with ascorbate than in a detergent-micelle state. We confirmed the ferric reductase activity of Cecytb-2 by analyzing the oxidation of ferrous heme upon addition of ferric substrate under anaerobic conditions, where clear and saturable dependencies on the substrate concentrations following the Michaelis–Menten equation were observed. Further, we confirmed that the ferric substrate was converted to a ferrous state by using a nitroso-PSAP assay. Importantly, we observed that the ferric reductase activity of Cecytb-2 became enhanced in the phospholipid bilayer nanodisc.


Author(s):  
Satarupa Dey

Chromium toxicity is a major environmental concern as it is the chief environmental pollutant released by paint, stainless steel, and mining industries. In nature, chromium exists in two stable valance states: Cr(VI) and Cr(III). Cr(VI) is highly toxic and soluble at neutral pH, whereas Cr(III) is insoluble at normal pH and is less toxic. Thus, it is essential to draw strategies for mitigation of Cr(VI), and microbial reduction of toxic Cr(VI) has been identified as a bioremediation technique not only to detoxify chromium but also to recover the non-toxic Cr(III) by physical means. Chromate reductase, the central enzyme involved in bioreduction of Cr(VI) to Cr(III) may be both intracellular as well as extracellular in nature. Most of the chromate reductase enzyme belongs to the oxidoreductase group such as nitroreductase, iron reductase, quinone reductase, hydrogenase, flavin reductase, as well as NAD(P)H-dependent reductase. Detailed analysis of the structure of the enzymes will help us in the suitable application of these enzymes in bioremediation of metal-contaminated wastes.


2019 ◽  
Vol 47 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Irnia Nurika ◽  
Daniel C. Eastwood ◽  
Timothy D. H. Bugg ◽  
Guy C. Barker

AbstractPutative iron-reductase (IR) genes from Serpula lacrymans with similarity to the conserved iron-binding domains of cellobiose dehydrogenase (CDH) enzymes have been identified. These genes were cloned and expressed to functionally characterize their activity and role in the decomposition of lignocellulose. The results show that IR1 and IR2 recombinant enzymes have the ability to depolymerize both lignin and cellulose, are capable of the reduction of ferric iron to the ferrous form, and are capable of the degradation of nitrated lignin. Expression of these genes during wheat straw solid-state fermentation was shown to correlate with the release of compounds associated with lignin decomposition. The results suggest that both IR enzymes mediate a non-enzymatic depolymerisation of lignocellulose and highlight the potential of chelator-mediated Fenton systems in the industrial pre-treatment of biomass.


2019 ◽  
Vol 143 ◽  
pp. 341-353 ◽  
Author(s):  
N. Rocco-Machado ◽  
D. Cosentino-Gomes ◽  
M.T. Nascimento ◽  
L. Paes-Vieira ◽  
Y.A. Khan ◽  
...  

2018 ◽  
Vol 15 (8) ◽  
pp. 716-722 ◽  
Author(s):  
A. Jolivet-Gougeon ◽  
M. Bonnaure-Mallet

Spirochetes are suspected to be linked to the genesis of neurological diseases, including neurosyphillis or neurodegeneration (ND). Impaired iron homeostasis has been implicated in loss of function in several enzymes requiring iron as a cofactor, formation of toxic oxidative species, inflammation and elevated production of beta-amyloid proteins. This review proposes to discuss the link that may exist between the involvement of Treponema spp. in the genesis or worsening of ND, and iron dyshomeostasis. Proteins secreted by Treponema can act directly on iron metabolism, with hemin binding ability (HbpA and HbpB) and iron reductase able to reduce the central ferric iron of hemin, iron-containing proteins (rubredoxin, neelaredoxin, desulfoferrodoxin metalloproteins, bacterioferritins etc). Treponema can also interact with cellular compounds, especially plasma proteins involved in iron metabolism, contributing to the virulence of the syphilis spirochetes (e.g. treponemal motility and survival). Fibronectin, transferrin and lactoferrin were also shown to be receptors for treponemal adherence to host cells and extracellular matrix. Association between Treponema and iron binding proteins results in iron accumulation and sequestration by Treponema from host macromolecules during systemic and mucosal infections.


2016 ◽  
Vol 52 (4) ◽  
pp. 495-499 ◽  
Author(s):  
Eui Ho Lee ◽  
Ki Seok Nam ◽  
Seon Kwang Lee ◽  
Eugeney Oh ◽  
Chan Yong Lee

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Anh T Nguyen ◽  
Mizanur M Rahaman ◽  
Stephanie M Mutchler ◽  
Megan Miller ◽  
Josef T Prchal ◽  
...  

Impaired soluble guanylyl cyclase (sGC)-dependent nitric oxide (NO) signaling has been linked to numerous cardiovascular diseases (CVD) such as hypertension, myocardial infarction and atherosclerosis. Despite emerging evidence indicating the importance of sGC function within the cardiovascular system, the basic mechanisms that regulate sGC activity remain incompletely understood. Herein, we provide in vitro and in vivo evidence that cytochrome b5 reductase 3 (Cyb5R3) is an sGC heme iron reductase and regulates downstream cGMP signaling. Of major significance, we also demonstrate that a Cyb5R3 T116S polymorphism with allele frequency of 0.23 in African Americans associates with increase blood pressure and is incapable of reducing sGC. Proximity ligation assay (PLA) experiments show that endogenous Cyb5R3 and oxidized sGC associate. Knockdown of Cyb5R3 results in reduced cGMP production and downstream signaling in rat aortic smooth muscle cells (SMC). Overexpression of Cyb5R3 not only rescues cGMP production but also increases baseline cGMP, whereas T116S mutant does not. Finally, inhibition of Cyb5R3 in mice significantly increases systemic blood pressure. Our studies are the first to identify an sGC heme iron reductase, provide evidence for Cyb5R3 as a key biological regulator of sGC activity and vascular tone in SMC, and link a human polymorphism of Cyb5R3 to increased blood pressure; all of which may lead to the development of novel therapeutics targeting Cyb5R3 for the treatment of CVD. Importantly, the co-expression of Cyb5R3 and sGC in multiple cells types suggests that this regulation of sGC activity may have broad applications for multiple physiological and pathophysiological processes. Results: Conclusions:


2015 ◽  
Vol 467 (3) ◽  
pp. 503-508 ◽  
Author(s):  
Zhi Li ◽  
David D. Kim ◽  
Ornella D. Nelson ◽  
Anne E. Otwell ◽  
Ruth E. Richardson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document