bone resorbing osteoclast
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Houfu Leng ◽  
Hanlin Zhang ◽  
Linsen Li ◽  
Shuhao Zhang ◽  
Yanping Wang ◽  
...  

Abstract Patients with multiple myeloma (MM), an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions. In this study, glycosphingolipids were essential in promoting autophagic degradation of the signaling molecule TRAF3, a key step in bone-resorbing osteoclast differentiation. Specifically altering the glycosphingolipid composition with eliglustat, an FDA approved glucosylceramide synthase inhibitor, arrested osteoclast differentiation; this could be rescued by exogenous addition of the missing glycosphingolipids. Eliglustat significantly reduced bone disease in several preclinical models of MM by inhibiting osteoclastogenesis and, due to its unique mode of action, it was able to act in combination with existing bone protective drugs. Furthermore, eliglustat arrested osteoclast differentiation from the bone marrow of MM patients in a glycosphingolipid-dependent way. This work identifies both the mechanism by which glucosylceramide synthase inhibition blocks autophagic degradation of TRAF3 to reduce osteoclastogenesis as well as highlighting the translational potential of eliglustat to be combined with current treatments.


2016 ◽  
Vol 22 (5) ◽  
pp. 460-461 ◽  
Author(s):  
Mone Zaidi ◽  
Jameel Iqbal

2014 ◽  
Vol 89 (1) ◽  
pp. 581-593 ◽  
Author(s):  
Weiqiang Chen ◽  
Suan-Sin Foo ◽  
Adam Taylor ◽  
Aleksei Lulla ◽  
Andres Merits ◽  
...  

ABSTRACTThe recent global resurgence of arthritogenic alphaviruses, in particular chikungunya virus (CHIKV), highlights an urgent need for the development of therapeutic intervention strategies. While there has been significant progress in defining the pathophysiology of alphaviral disease, relatively little is known about the mechanisms involved in CHIKV-induced arthritis or potential therapeutic options to treat the severe arthritic symptoms associated with infection. Here, we used microcomputed tomographic (μCT) and histomorphometric analyses to provide previously undescribed evidence of reduced bone volume in the proximal tibial epiphysis of CHIKV-infected mice compared to the results for mock controls. This was associated with a significant increase in the receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) ratio in infected murine joints and in the serum of CHIKV patients. The expression levels of the monocyte chemoattractant proteins (MCPs), including MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7, were also highly elevated in joints of CHIKV-infected mice, accompanied by increased cellularity within the bone marrow in tibial epiphysis and ankle joints. Both this effect and CHIKV-induced bone loss were significantly reduced by treatment with the MCP inhibitor bindarit. Collectively, these findings demonstrate a unique role for MCPs in promoting CHIKV-induced osteoclastogenesis and bone loss during disease and suggest that inhibition of MCPs with bindarit may be an effective therapy for patients affected with alphavirus-induced bone loss.IMPORTANCEArthritogenic alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), cause worldwide outbreaks of polyarthritis, which can persist in patients for months following infection. Previous studies have shown that host proinflammatory soluble factors are associated with CHIKV disease severity. Furthermore, it is established that chemokine (C-C motif) ligand 2 (CCL2/MCP-1) is important in cellular recruitment and inducing bone-resorbing osteoclast (OC) formation. Here, we show that CHIKV replicates in bone and triggers bone loss by increasing the RANKL/OPG ratio. CHIKV infection results in MCP-induced cellular infiltration in the inflamed joints, and bone loss can be ameliorated by treatment with an MCP-inhibiting drug, bindarit. Taken together, our data reveal a previously undescribed role for MCPs in CHIKV-induced bone loss: one of recruiting monocytes/OC precursors to joint sites and thereby favoring a pro-osteoclastic microenvironment. This suggests that bindarit may be an effective treatment for alphavirus-induced bone loss and arthritis in humans.


2007 ◽  
Vol 176 (6) ◽  
pp. 877-888 ◽  
Author(s):  
Wei Zou ◽  
Hideki Kitaura ◽  
Jennifer Reeve ◽  
Fanxin Long ◽  
Victor L.J. Tybulewicz ◽  
...  

In this study, we establish that the tyrosine kinase Syk is essential for osteoclast function in vitro and in vivo. Syk−/− osteoclasts fail to organize their cytoskeleton, and, as such, their bone-resorptive capacity is arrested. This defect results in increased skeletal mass in Syk−/− embryos and dampened basal and stimulated bone resorption in chimeric mice whose osteoclasts lack the kinase. The skeletal impact of Syk deficiency reflects diminished activity of the mature osteoclast and not impaired differentiation. Syk regulates bone resorption by its inclusion with the αvβ3 integrin and c-Src in a signaling complex, which is generated only when αvβ3 is activated. Upon integrin occupancy, c-Src phosphorylates Syk. αvβ3-induced phosphorylation of Syk and the latter's capacity to associate with c-Src is mediated by the immunoreceptor tyrosine-based activation motif (ITAM) proteins Dap12 and FcRγ. Thus, in conjunction with ITAM-bearing proteins, Syk, c-Src, and αvβ3 represent an essential signaling complex in the bone-resorbing osteoclast, and, therefore, each is a candidate therapeutic target.


1996 ◽  
Vol 271 (3) ◽  
pp. F637-F644
Author(s):  
M. Zaidi ◽  
V. S. Shankar ◽  
O. A. Adebanjo ◽  
F. A. Lai ◽  
M. Pazianas ◽  
...  

Certain eukaryotic cells can sense changes in their extracellular Ca2+ concentration through molecular structures termed Ca(2+)-sensing receptors (CaRs). We have shown recently that in the bone-resorbing osteoclast, a unique cell surface-expressed ryanodine receptor (RyR), functions as the CaR. The present study demonstrates that the sensitivity of this receptor is modulated by physiological femtomolar concentrations of the bone-conserving hormone, calcitonin. Calcitonin was found to inhibit cytosolic Ca2+ responses to both Ca2+ and Ni2+. The latter inhibition was mimicked by amylin (10(-12) M), calcitonin gene-related peptide (10(-12) M), cholera toxin (5 micrograms/l) and dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) (2.5 x 10(-4) or 5 x 10(-4) M) and was reversed by the protein kinase A phosphorylation inhibitor, IP-20. Finally, using a quench flow module, we showed that cellular cAMP levels rise to a peak within 25 ms of calcitonin application; this is consistent with the peptide's rapid effect on CaR activation. We conclude, therefore, that cAMP plays a critical role in the control of CaR function by calcitonin.


Sign in / Sign up

Export Citation Format

Share Document