cup anemometer
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 25 (4) ◽  
pp. 160-162
Author(s):  
Bojan Vujičić ◽  
Boris Ličina ◽  
Platon Sovilj ◽  
Vladimir Vujičić

The paper deals with the application of a newly developed anemometer without moving parts. It is digitized and has built-in electronics that convert the vibrations of two aluminum fixed frames into two digital signals: one, which shows the strength (speed absolute value)) of the wind, and the other, which shows its direction. Both of these signals are used to calculate wind power and energy. Earlier works have shown that the two-bit stochastic digital measurement method overcomes (eliminates) the problem of the offset of the analog adder. The authors of this paper apply this idea to the digital output of the sensor, where the role of the offset of the analog adder is taken over by the integral nonlinearity of the digital output of the anemometer. The first step in this direction is digitally dithering the sensor output. This principle is presented in detail, as well as a rough estimate of the accuracy gain in measuring wind energy. The obtained result shows that the accuracy in measuring wind energy is not worse than the limit accuracy in the case of a cup anemometer that generates sinusoidal voltage.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012101
Author(s):  
D Alfonso-Corcuera ◽  
S. Pindado ◽  
M Ogueta-Gutiérrez ◽  
A Sanz-Andrés

Abstract In the present work, the effect of the friction forces at bearings on cup anemometer performance is studied. The study is based on the classical analytical approach to cup anemometer performance (2-cup model), used in the analysis by Schrenk (1929) and Wyngaard (1981). The friction torque dependence on temperature was modelled using exponential functions fitted to the experimental results from RISØ report #1348 by Pedersen (2003). Results indicate a logical poorer performance (in terms of a lower rotation speed at the same wind velocity), with an increase of the friction. However, this decrease of the performance is affected by the aerodynamic characteristics of the cups. More precisely, results indicate that the effect of the friction is modified depending on the ratio between the maximum value of the aerodynamic drag coefficient (at 0° yaw angle) and the minimum one (at 180° yaw angle). This reveals as a possible way to increase the efficiency of the cup anemometer rotors. Besides, if the friction torque is included in the equations, a noticeable deviation of the rotation rate (0.5-1% with regard to the expected rotation rate without considering friction) is found for low temperatures.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012111
Author(s):  
S. Marín-Coca ◽  
D. González-Bárcena ◽  
S. Pindado ◽  
E. Roibás-Millán

Abstract This paper describes the modelling and simulation of the Electrical Power Subsystem (EPS) of the Thermal Analysis Support and Environment Characterization Laboratory (TASEC-Lab). TASEC-Lab is a university experiment on board a sub-orbital platform. It is designed to measure the convection heat transfer in high-altitude balloon missions. The EPS provides, regulates, and distributes electric power to the different systems, parts, and sensors that compose the TASEC-Lab (e.g., On Board Computer (OBC), temperature and pressure sensors, cup anemometer, GPS, heaters... ). It mainly consists of a Li-ion battery and two DC-DC converters, and they have been characterized by conducting laboratory tests and fitting to experimental data. A real power consumption profile of the first TASEC-Lab’s mission (designed by Universidad Politecnica de Madrid) is used as input to simulate the EPS. The mathematical model is validated by comparison with experimental results.


Measurement ◽  
2021 ◽  
Vol 172 ◽  
pp. 108887
Author(s):  
Yongqing Bai ◽  
Xiangyu Meng ◽  
Haiyan Guo ◽  
Dechuan Liu ◽  
Yuejun Jia ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1051
Author(s):  
Lindong Dai ◽  
Jinyuan Xin ◽  
Hongchao Zuo ◽  
Yongxiang Ma ◽  
Lei Zhang ◽  
...  

The high-frequency monitoring of three-dimensional wind fields is crucial in planetary boundary layer meteorology. Doppler wind lidar and meteorological towers are the most important instruments for site observations of three-dimensional wind fields. This study systematically investigated and compared the performances of three wind measurement instruments: A Doppler wind lidar (Windcube 100s), cup anemometer/wind vane and sonic wind anemometer mounted on the 325 m meteorological tower in the polluted urban city of Beijing. The horizontal wind speed measurements of the Doppler wind lidar closely matched those of the cup anemometer and the sonic wind anemometer with high coefficients of determination (R2: 0.79–0.96 and 0.90–0.97, respectively). Moreover, the results also showed good agreement between the three measurements of the prevailing horizontal wind direction. Conversely, there were weak correlations between the vertical wind speeds of the Doppler wind lidar and sonic wind anemometer with low coefficients of determination (R2: 0.30–0.46). With increasing temporal scale, the consistency in the vertical wind increased. In addition, the Doppler wind lidar seemed to correlate better with the sonic wind anemometer at heights exceeding 300 m (R2: 0.48–0.77). Note that there was a remarkable difference between the Doppler wind lidar and 325 m meteorological tower observations as the aerosol concentrations changed rapidly. Different wind measurement instruments have unique advantages and are thus irreplaceable. The Doppler wind lidar is better at measuring larger turbulent eddies.


Author(s):  
Amir Ali Safaei Pirooz ◽  
Richard G.J. Flay ◽  
Lorenzo Minola ◽  
Cesar Azorin-Molina ◽  
Deliang Chen

<p>Wind speed data recorded using different signal-processing procedures can introduce errors in the wind speed measurements. This study aims to assess the effects of a set of various moving average filter durations and turbulence intensities on the recorded maximum gust wind speeds. For this purpose, a series of wind-tunnel experiments was carried out at the University of Auckland, New Zealand, on the widely-used Vaisala WAA151 cup anemometer. The variations of gust and peak factors, and turbulence intensities measured by the cup anemometer as a function of the averaging duration and turbulence intensity are presented. The wind-tunnel results are compared with values computed from a theoretical approach, namely random process and linear system theory, and the results were also validated against values reported in the literature where possible.</p><p>To summarise, the major findings of this experimental study are:</p><ol><li>The results show that increasing the effective gust duration reduces both the gust and peak factors, resulting in an underestimation of maximum gust wind speeds and an overestimation of minimum gust wind speeds.</li> <li>The maximum difference between gust factors obtained for high (e.g. 3-s to 5-s) and low (raw, unfiltered measurements) gust durations reached values of 25% – 30% for the high turbulence conditions, and up to 5% – 10% for low turbulence intensities.</li> <li>Gust factor ratios, an important parameter that allow the measurements from a specific gust duration to be converted to other gust durations of interest, are reported for various gust durations as a function of turbulence intensity.</li> <li>The differences and gust factor ratios computed in this study can be applied directly to full-scale measurements, and can be used in several research areas, including analysing and homogenisation of historical wind speed time series, comparing gust climatologies of countries where different gust durations have been adopted, and so on. These factors clearly play an essential role in meteorological, climatological and wind engineering studies.</li> </ol>


Sign in / Sign up

Export Citation Format

Share Document