water conveyance tunnel
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 28)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Majid Mirahmadi

Abstract Recently energy costs are increasing so it is critical to master the challenge of energy efficiency. Energy consumption for drilling in tunnel Boring Machines (TBMs) is mainly determined by the specific energy. Specific energy is the amount of energy needed to excavate a unit volume of rock mass and is considered one of the important parameters used for performance prediction of TBMs. This study tries to apply the strain energy of a rock mass to develop a new method for foretelling specific energy for TBM. The area under complete stress–strain curve is known as strain energy which is pertinent to the rock mass behavior, pre and post failure properties, peak strain and post peak strain. In this study statistical analysis performed through collected actual data from Karaj Tehran Water Conveyance Tunnel revealed a new relationship between the specific energy used by TBM (SE) and the strain energy. For more detailed study the rock mass classification is performed with respect to the geological strength index and all geological units are then classified in three classes and the specific energy of TBM is predicted based on the strain energy of rock mass for each three classes. The results reveals that two parameters of the specific energy and the strain energy are in a direct relation whose correlation is increased with considering the rock mass classification based on the post peak behavior of rock mass.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fei Li ◽  
Ningdong Chang ◽  
Jianhui Wang ◽  
Tao Feng ◽  
Chunling Li

Composite lining of deep buried water conveyance tunnel for bearing high internal water pressure is a new type of applicable structure. However, up to date, no effective method is available to calculate the stress of the structure. In this paper, a simplified algorithm, which can be used to calculate the stress distribution of composite lining accurately but costs little computational resource, is proposed. This algorithm, which is based on the elastic theory, takes the effect of internal water pressure and surrounding rock on the composite lining into consideration, respectively. Then, the stress distribution of composite lining in infinite body is derived on the basis of Lame solution. Finally, a case study is followed by choosing a typical section of the Eastern Canal in Beijing of the South-to-North Water Diversion Project (SNWDP). This case study was analysed by using the simplified algorithm and verified by finite element method with ABAQUS. The results show that the stress distribution of composite lining can be obtained quickly and accurately with the simplified algorithm, which can provide a reference for other engineering designs.


Sign in / Sign up

Export Citation Format

Share Document