detoxification gene
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Michael J. Lawrence ◽  
Phil Grayson ◽  
Jennifer D. Jeffrey ◽  
Margaret F. Docker ◽  
Colin J Garroway ◽  
...  

Pesticides are critical for invasive species management, but often have negative effects on non-target native biota. Tolerance to pesticides should have an evolutionary basis, but this is poorly understood. Invasive sea lamprey (Petromyzon marinus) populations in North America have been controlled with a pesticide lethal to them at lower concentrations than native fishes. We addressed how interspecific variation in gene expression and detoxification gene diversity confer differential pesticide sensitivity in two fish species. We exposed sea lamprey and bluegill (Lepomis macrochirus), a tolerant native species, to TFM, a pesticide commonly used in sea lamprey control, and used whole-transcriptome sequencing of gill and liver to characterize the cellular response. Comparatively, bluegill exhibited a larger number of detoxification genes expressed and a larger number of responsive transcripts overall, which likely contributes to greater tolerance to TFM. Understanding the genetic and physiological basis for pesticide tolerance is crucial for managing invasive species.


Cell ◽  
2021 ◽  
Vol 184 (13) ◽  
pp. 3588
Author(s):  
Jixing Xia ◽  
Zhaojiang Guo ◽  
Zezhong Yang ◽  
Haolin Han ◽  
Shaoli Wang ◽  
...  

Cell ◽  
2021 ◽  
Author(s):  
Jixing Xia ◽  
Zhaojiang Guo ◽  
Zezhong Yang ◽  
Haolin Han ◽  
Shaoli Wang ◽  
...  

2020 ◽  
Author(s):  
Tse-Yu Chen ◽  
Chelsea T. Smartt ◽  
Dongyoung Shin

AbstractAedes aegypti, as one of the vectors transmitting several arboviruses, is a main target in mosquito control programs. Permethrin remains the major adulticide used to control these mosquitoes. The increasing percentage of permethrin resistant Aedes aegypti has become an important issue around the world. Knockdown resistance (kdr) is one of the major mechanisms related to permethrin resistance. On the other hand, detoxification genes including cytochrome P450 monooxygenases (P450) and glutathione S-transferases (GSTs) are also suggested as permethrin resistance apparatus. Here we selected a permethrin resistant (p-s) Aedes aegypti population from Florida and compared its mortality after exposure, median lethal dose (LD50), adult survivorship and larval development to several field populations. We used allele-specific PCR genotyping of the S989P, V1016I and F1534C sites in the sodium channel gene and gene expression analysis of several p450 and GSTs genes before and after permethrin exposure to determine their involvement in permethrin sensitivity between Ae. aegypti populations. Results indicated the p-s population had the highest resistance to permethrin based on LD50 and the mortality test. The larval development time did not significantly differ between the populations, however the p-s adults survived longer than the other populations. In the genotype study, p-s population had mostly homozygous mutations in all three mutant sites of the sodium channel gene. Detoxification gene expression studies showed that two p450 genes, AAEL009124 (CYP6N12) and, AAEL009127 (CYP6M11), were upregulated and, accession # AAEL006802, AAEL014891 (CYP6P12) and AAEL014619 (CYP9J22) were downregulated after 120 minutes of permethrin exposure in the p-s population. These results suggest that in highly permethrin resistant Aedes aegypti populations both kdr mutations and xenobiotic metabolism might be involved. Involvement of multiple mechanisms to achieve resistance to permethrin supports the need for implementing comprehensive mosquito control measures, such as an integrated pest management strategy, so that selection pressure for resistance is decreased without compromising control efforts while new methodologies are being developed.Author summaryPyrethroids have been applied as a major type of insecticide targeted at Aedes aegypti, a key vector in the transmission of several flaviviruses. Resistance to pyrethroids has emerged and has become a worldwide threat to mosquito control. Pyrethroid resistance usually occurs with knockdown resistance (kdr) where the voltage gated sodium channel is mutated. We selected a permethrin resistant (p-s) Aedes aegypti population from Florida and, along with two other field populations, examined three mutation sites, S989P, V1016I and F1534C. The data showed the p-s population had the most homozygous mutations which correlated to the permethrin resistance level. Besides kdr, detoxification genes also have been identified to have pyrethroid metabolizing abilities. We found two cytochrome P450 monooxygenases genes, CYP6N12 and CYP6M11, were overexpressed in the p-s population after permethrin exposure, suggesting a role in resistance to permethrin. Together, our results provide information about potential mechanisms used in major vectors with high insecticide resistance.


Sign in / Sign up

Export Citation Format

Share Document