outer membrane leaflet
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22677-22682
Author(s):  
Maria Lyngby Karlsen ◽  
Dennis S. Bruhn ◽  
Weria Pezeshkian ◽  
Himanshu Khandelia

Long acyl chain sphingomyelin and saturated phospholipid tails in the outer membrane leaflet deplete cholesterol from the inner leaflet in mammalian membranes.


2020 ◽  
Author(s):  
Henry C. Nguyen ◽  
Arthur A. Melo ◽  
Jerzy Kruk ◽  
Adam Frost ◽  
Michal Gabruk

AbstractChlorophyll (Chl) biosynthesis, crucial to life on Earth, is tightly regulated because its precursors are phototoxic1. In flowering plants, the enzyme Light-dependent Protochlorophyllide OxidoReductase (LPOR) captures photons to catalyze the penultimate reaction: the reduction of a double-bond within protochlorophyllide (Pchlide) to generate chlorophyllide (Chlide)2,3. In darkness, LPOR oligomerizes to facilitate photon energy transfer and catalysis4,5. However, the complete 3D structure of LPOR, the higher-order architecture of LPOR oligomers, and the implications of these self-assembled states for catalysis, including how LPOR positions Pchlide and the cofactor NADPH, remain unknown. Here we report the atomic structure of LPOR assemblies by electron cryo-microscopy (cryoEM). LPOR polymerizes with its substrates into helical filaments around constricted lipid bilayer tubes. Portions of LPOR and Pchlide insert into the outer membrane leaflet, targeting the product, Chlide, to the membrane for the final reaction site of chlorophyll biosynthesis. In addition to its crucial photocatalytic role, we show that in darkness LPOR filaments directly shape membranes into high-curvature tubules with the spectral properties of the prolammelar body, whose light-triggered disassembly provides lipids for thylakoid assembly. Our structure of the catalytic site, moreover, challenges previously proposed reaction mechanisms6. Together, our results reveal a new and unexpected synergy between photosynthetic membrane biogenesis and chlorophyll synthesis in plants orchestrated by LPOR.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Stephen P. Brazier ◽  
Vsevolod Telezhkin ◽  
Paul J. Kemp

Proteomic studies have suggested a biochemical interaction betweenαsubunit of the large conductance, voltage- and Ca2+-activated potassium channel (BKCaα), and annexin A5 (ANXA5), which we verify here by coimmunoprecipitation and double labelling immunocytochemistry. The observation that annexin is flipped to the outer membrane leaflet of the plasma membrane during apoptosis, together with the knowledge that the intracellular C-terminal ofBKCaαcontains both Ca2+-binding and a putative annexin-binding motif, prompted us to investigate the functional consequences of this protein partnership to cell death. Membrane biotinylation demonstrated that ANXA5 was flipped to the outer membrane leaflet of HEK 293 cells early in serum deprivation-evoked apoptosis. As expected, serum deprivation caused caspase-3/7 activation and this was accentuated inBKCaαexpressing HEK 293 cells. The functional consequences of ANXA5 partnership withBKCaαwere striking, with ANXA5 knockdown causing an increase and ANXA5 overexpression causing a decrease, in singleBKCachannel Ca2+-sensitivity, measured in inside-out membrane patches by patch-clamp. Taken together, these data suggest a novel model of the early stages of apoptosis where membrane flippage results in removal of the inhibitory effect of ANXA5 on K+channel activity with the consequent amplification of Ca2+influx and augmented activation of caspases.


2011 ◽  
Vol 50 ◽  
pp. 161-178 ◽  
Author(s):  
Frances J. Sharom

Pgp (P-glycoprotein) (ABCB1) is an ATP-powered efflux pump which can transport hundreds of structurally unrelated hydrophobic amphipathic compounds, including therapeutic drugs, peptides and lipid-like compounds. This 170 kDa polypeptide plays a crucial physiological role in protecting tissues from toxic xenobiotics and endogenous metabolites, and also affects the uptake and distribution of many clinically important drugs. It forms a major component of the blood–brain barrier and restricts the uptake of drugs from the intestine. The protein is also expressed in many human cancers, where it probably contributes to resistance to chemotherapy treatment. Many chemical modulators have been identified that block the action of Pgp, and may have clinical applications in improving drug delivery and treating cancer. Pgp substrates are generally lipid-soluble, and partition into the membrane before the transporter expels them into the aqueous phase, much like a ‘hydrophobic vacuum cleaner’. The transporter may also act as a ‘flippase’, moving its substrates from the inner to the outer membrane leaflet. An X-ray crystal structure shows that drugs interact with Pgp within the transmembrane regions by fitting into a large flexible binding pocket, which can accommodate several substrate molecules simultaneously. The nucleotide-binding domains of Pgp appear to hydrolyse ATP in an alternating manner; however, it is still not clear whether transport is driven by ATP hydrolysis or ATP binding. Details of the steps involved in the drug-transport process, and how it is coupled to ATP hydrolysis, remain the object of intensive study.


2006 ◽  
Vol 36 (4-5) ◽  
pp. 461-475 ◽  
Author(s):  
Astrid Tannert ◽  
Anke Kurz ◽  
Karl-Rudolf Erlemann ◽  
Karin Müller ◽  
Andreas Herrmann ◽  
...  

1998 ◽  
Vol 94 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Marie-Aude Devynck ◽  
J. Kuneš ◽  
Kim Hanh Le Quan Sang ◽  
J. Zicha

1. Multiple cell membrane alterations have been described in humans and animals with various genetic forms of hypertension and/or dyslipidaemia. The aim of our study was to characterize membrane microviscosity, using two different fluorescent probes exploring either the outer membrane leaflet [trimethylamino-diphenylhexatriene (TMA-DPH)] or the lipid membrane core [diphenylhexatriene (DPH)], in platelets and erythrocytes of genetically hypertensive rats of the Prague hereditary hypertriglyceridaemic (HTG) strain. The relationships of membrane microviscosity to hypertension, hypertriglyceridaemia and cell calcium handling were also investigated. 2. Membrane microviscosity was similar in HTG and normotensive control Wistar rats when measured in platelets or erythrocyte ghosts incubated in Na+-containing medium. On the contrary, TMA-DPH fluorescence anisotropy was significantly reduced in HTG platelets incubated in Na+-free medium because external Na+ removal elicited a larger rise of TMA-DPH anisotropy in Wistar platelets. 3. Plasma triacylglycerols were associated positively with platelet TMA-DPH anisotropy and negatively with DPH anisotropy in both strains. The slopes of these relationships were reduced in HTG compared with Wistar rats. Platelet TMA-DPH anisotropy correlated positively and DPH anisotropy negatively with the cytosolic calcium concentration in unstimulated platelets, the slopes being almost identical in both strains. 4. Pulse pressure correlated negatively with TMA-DPH anisotropy and positively with DPH anisotropy found in erythrocyte ghosts. 5. The present results suggest that plasma triacylglycerols and cytosolic calcium are capable of modulating the membrane microviscosity in this new animal model of genetic hypertension associated with hypertriglyceridaemia.


Lupus ◽  
1996 ◽  
Vol 5 (5) ◽  
pp. 498-502 ◽  
Author(s):  
J Rauch ◽  
AS Janoff

Autoantibodies to phospholipids other than cardiolipin have received less attention, to date, than anti-cardiolipin antibodies. This review focuses on these antibodies and potential roles for both phospholipid and protein in their reactivity. We review data in the literature indicating that antibodies to phosphatidylethanolamine and some lupus anticoagulant antibodies recognize phospholipid-binding proteins in association with phospholipid. Kininogens appear to be involved in the binding of antibodies to phosphatidylethanolamine, while phosphatidylserine-binding proteins, such as prothrombin and annexin V, have been implicated in lupus anticoagulant antibody recognition. These proteins bind to phospholipids that normally reside in the inner monolayer of the cell membrane, suggesting that exposure of these lipids is necessary for protein binding and antibody recognition to occur. In contrast, other autoantibodies, in particular those reactive with erythrocytes, appear to be directed at phospholipids that normally occur in the outer membrane leaflet, such as phosphatidylcholine. In summary, there is clearly accumulating evidence that antibodies to phospholipids other than cardiolipin recognize epitopes on phospholipid-binding proteins. It is not clear whether recognition of these epitopes is due to an increase in antigen density or a change in the protein or phospholipid structure, but it is likely that both protein and phospholipid structure play an important role in the in vivo interactions of these antibodies.


Sign in / Sign up

Export Citation Format

Share Document