linear discriminant analysis classifier
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyang Li ◽  
Xili Shi ◽  
Balvinder S. Handa ◽  
Arunashis Sau ◽  
Bowen Zhang ◽  
...  

Background: Atrial fibrillation (AF) and ventricular fibrillation (VF) are complex heart rhythm disorders and may be sustained by distinct electrophysiological mechanisms. Disorganised self-perpetuating multiple-wavelets and organised rotational drivers (RDs) localising to specific areas are both possible mechanisms by which fibrillation is sustained. Determining the underlying mechanisms of fibrillation may be helpful in tailoring treatment strategies. We investigated whether global fibrillation organisation, a surrogate for fibrillation mechanism, can be determined from electrocardiograms (ECGs) using band-power (BP) feature analysis and machine learning.Methods: In this study, we proposed a novel ECG classification framework to differentiate fibrillation organisation levels. BP features were derived from surface ECGs and fed to a linear discriminant analysis classifier to predict fibrillation organisation level. Two datasets, single-channel ECGs of rat VF (n = 9) and 12-lead ECGs of human AF (n = 17), were used for model evaluation in a leave-one-out (LOO) manner.Results: The proposed method correctly predicted the organisation level from rat VF ECG with the sensitivity of 75%, specificity of 80%, and accuracy of 78%, and from clinical AF ECG with the sensitivity of 80%, specificity of 92%, and accuracy of 88%.Conclusion: Our proposed method can distinguish between AF/VF of different global organisation levels non-invasively from the ECG alone. This may aid in patient selection and guiding mechanism-directed tailored treatment strategies.


DYNA ◽  
2019 ◽  
Vol 86 (208) ◽  
pp. 110-116
Author(s):  
Roberto Díaz-Amador ◽  
Miguel A. Mendoza-Reyes

This paper presents an investigation focused on the impact of muscle fatigue on a pattern recognition scheme for myoelectric control that uses three features sets and a Linear Discriminant Analysis classifier. Separability and repeatability between classes were used to evaluate the features changes while muscle fatigue was induced. Results show that while muscle fatigue is increasing over time, both separability and repeatability of the classes decrease. Finally two training schemes that use data acquired under fatigue, multiconditional training and selective classification, were evaluated using the Total Error Rate (TER). Results indicate that, when LDA classifier was trained whit no-fatigue, moderated fatigue and fatigue data, TER decreased to moderated and fatigue data, but increased to no-fatigue data. On the other hand, using three LDA classifiers to each of the condition, TER decreased to 9.26 % and 11 % in moderated fatigue and fatigue cases, while no-fatigue case was not affected.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ignas Martišius ◽  
Robertas Damaševičius

Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.


Sign in / Sign up

Export Citation Format

Share Document