bright light exposure
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 15)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isuzu Nakamoto ◽  
Sayaka Uiji ◽  
Rin Okata ◽  
Hisayoshi Endo ◽  
Sena Tohyama ◽  
...  

AbstractIn humans, most renal functions, including urine volume and electrolyte excretions, have a circadian rhythm. Light is a strong circadian entrainment factor and daytime-light exposure is known to affect the circadian rhythm of rectal temperature (RT). The effects of daytime-light exposure on the diurnal rhythm of urinary excretion have yet to be clarified. The aim of this study was to clarify whether and how daytime exposure to bright-light affects urinary excretions. Twenty-one healthy men (21–27 years old) participated in a 4-day study involving daytime (08:00–18:00 h) exposure to two light conditions, Dim (< 50 lx) and Bright (~ 2500 lx), in a random order. During the experiment, RT was measured continuously. Urine samples were collected every 3 ~ 4 h. Compared to the Dim condition, under the Bright condition, the RT nadir time was 45 min earlier (p = 0.017) and sodium (Na), chloride (Cl), and uric acid (UA) excretion and urine volumes were greater (all p < 0.001), from 11:00 h to 13:00 h without a difference in total daily urine volume. The present results suggest that daytime bright light exposure can induce a phase shift advance in urine volume and urinary Na, Cl, and UA excretion rhythms.


Author(s):  
Mengjuan Shang ◽  
Jimeng Zhang ◽  
Meilun Shen ◽  
Zhichuan Sun ◽  
Peng Gao ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Aki Kawasaki ◽  
Morgane Udry ◽  
Mohamad El Wardani ◽  
Mirjam Münch

Glaucoma damages retinal ganglion cells, including intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells modulate various non-visual physiological and psychological functions which are modulated by light. In patients with glaucoma, we assessed the effect of daily bright light exposure (LE) on several melanopsin-dependent functions, such as the pupil constriction, circadian rest-activity cycles, sleep and subjective well-being including relaxation, alertness and mood. Twenty patients participated in the study (9 women, 11 men, mean age = 67.6 ± 7.5 y). Pupillometry was performed before the LE weeks and repeated on the last day of LE. The post-illumination pupil response (PIPR) was calculated as a proxy for melanopsin-dependent activation. Participants continuously wore an activity monitor and self-assessed sleep quality, well-being and visual comfort for 7 days before and during 4 weeks of daily bright LE (30 min to 10,000 lux polychromatic bright white light). After the LE, there was a significantly greater PIPR and higher subjective sleep quality when compared to the pre-LE week (p &lt; 0.05), but no significant changes in 24-h rhythms or sleep parameters. A greater PIPR was correlated with an increase in circadian amplitude and higher inter-daily stability (derived from rest-activity cycles; p &lt; 0.05). In a small group of patients with glaucoma, scheduled daily bright light exposure could improve subjective sleep quality. These findings highlight the importance to evaluate and maintain non-visual functions at different levels in patients with progressive loss of ipRGCs.


2020 ◽  
Vol 26 (4) ◽  
pp. 221-228
Author(s):  
Lisa L. Onega ◽  
Thomas W. Pierce

SUMMARYBright light therapy is an accepted and commonly used treatment for seasonal affective and circadian rhythm disorders. In the past 20 years, researchers have examined the effectiveness of bright light therapy in improving depression and agitation in older adults with dementia. This article provides clinicians with a summary of the neurophysiology of bright light therapy, bright light research considerations, an evidence-based bright light protocol, problems related to bright light therapy, and clinical implications for bright light therapy in older adults with dementia. Bright light exposure is a safe, non-pharmacological treatment that is currently underutilised in this population. Clinicians may find bright light therapy beneficial as a primary or adjunctive treatment in reducing depression and agitation in older adults with dementia.


2019 ◽  
Vol 166 ◽  
pp. 107084 ◽  
Author(s):  
Takuya Yoshiike ◽  
Motoyasu Honma ◽  
Hiroki Ikeda ◽  
Kenichi Kuriyama

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marije te Kulve ◽  
Luc J. M. Schlangen ◽  
Wouter D. van Marken Lichtenbelt

Abstract The widespread use of electric light and electronic devices has resulted in an excessive exposure to light during the late-evening and at night. This late light exposure acutely suppresses melatonin and sleepiness and delays the circadian clock. Here we investigate whether the acute effects of late-evening light exposure on our physiology and sleepiness are reduced when this light exposure is preceded by early evening bright light. Twelve healthy young females were included in a randomised crossover study. All participants underwent three evening (18:30-00:30) sessions during which melatonin, subjective sleepiness, body temperature and skin blood flow were measured under different light conditions: (A) dim light, (B) dim light with a late-evening (22:30-23:30) light exposure of 750 lx, 4000 K, and (C) the same late-evening light exposure, but now preceded by early-evening bright light exposure (18.30-21.00; 1200 lx, 4000 K). Late-evening light exposure reduced melatonin levels and subjective sleepiness and resulted in larger skin temperature gradients as compared to dim. Interestingly, these effects were reduced when the late-evening light was preceded by an early evening 2.5-hour bright light exposure. Thus daytime and early-evening exposure to bright light can mitigate some of the sleep-disruptive consequences of light exposure in the later evening.


Sign in / Sign up

Export Citation Format

Share Document