produce superoxide anion
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2006 ◽  
Vol 111 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Mark T. Quinn ◽  
Mary Cloud B. Ammons ◽  
Frank R. DeLeo

The NADPH oxidase was originally identified as a key component of human innate host defence. In phagocytes, this enzyme complex is activated to produce superoxide anion and other secondarily derived ROS (reactive oxygen species), which promote killing of invading micro-organisms. However, it is now well-established that NADPH oxidase and related enzymes also participate in important cellular processes not directly related to host defence, including signal transduction, cell proliferation and apoptosis. These enzymes are present in essentially every organ system in the body and contribute to a multitude of physiological events. Although essential for human health, excess NADPH-oxidase-generated ROS can promote numerous pathological conditions. Herein, we summarize our current understanding of NADPH oxidases and provide an overview of how they contribute to specific human diseases.


2006 ◽  
Vol 84 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Marc-André Laplante ◽  
Jacques de Champlain

The NAD(P)H oxidase is an enzyme assembled at the cellular membrane able to produce superoxide anion from NADH or NAD(P)H (nicotinamide adenine dinucleotide phosphate). It is one of the main sources of superoxide anion in cardiovascular tissues and its role in a variety of cardiovascular disorders such as atherosclerosis, cardiac hypertrophy, and endothelial dysfunction was recently proposed. Although, many factors and receptors were shown to lead to the activation of the enzyme, particulary the type 1 angiotensin receptor, the pathways involved are still widely unknown. Despite the identification of factors such as c-Src and protein kinase C implicated in the acute activation of NAD(P)H oxidase, the signalling involved in the sustained activation of the enzyme is probably far more complex than was previously envisioned. In this review, we describe the role of endothelin-1 in NAD(P)H oxidase signalling after a sustained stimulation by angiotensin II. Since most pathologies caused by an NAD(P)H oxidase overactivation develop over a relatively long period of time, it is necessary to better understand the long-term signalling of the enzyme for the development or use of more specific therapeutic tools.


Paraquat (1,1’-dimethyl-4,4'-bipyridylium dichloride) is marketed as a contact herbicide. Although it has proved safe in use there have been a number of cases of poisoning after the intentional swallowing of the commercial product. The most characteristic feature of poisoning is lung damage, which causes severe anoxia and may lead to death. The specific toxicity to the lung can be explained in part by the accumulation of paraquat into the alveolar type I and type II epithelial cells by a process that has been shown to accumulate endogenous diamines and poly amines. When accumulated, paraquat undergoes an NADPH-dependent, one-electron reduction to form its free radical, which then reacts avidly with molecular oxygen to reform the cation and produce superoxide anion, which in turn will dismutate to form H 2 O 2 . This may lead to the formation of more reactive (and hence toxic) radicals which have the potential to cause lipid peroxidation and lead to cell death. Biochemical changes provoked by paraquat in the lung suggest that it causes a rapid, pronounced and prolonged oxidation of NADPH that initiates compensatory biochemical processes in the lung. NADPH may be further depleted as it is consumed in an attempt to detoxify H 2 O 2 or lipid hydroperoxides. Thus it is possible that with toxic levels of paraquat in the cell, compensatory biochemical processes are insufficient to maintain levels of NADPH consistent either with cell survival or with the ability to detoxify H 2 O 2 or prevent lipid peroxidation.


Sign in / Sign up

Export Citation Format

Share Document