gabaar subunit
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 3 (3) ◽  
pp. 482-494
Author(s):  
Janelle Chong ◽  
James Frederick Cheeseman ◽  
Matthew D. M. Pawley ◽  
Andrea Kwakowsky ◽  
Guy R. Warman

General anaesthesia (GA) is known to affect the circadian clock. However, the mechanisms that underlie GA-induced shifting of the clock are less well understood. Activation of γ-aminobutyric acid (GABA)-type A receptors (GABAAR) in the suprachiasmatic nucleus (SCN) can phase shift the clock and thus GABA and its receptors represent a putative pathway via which GA exerts its effect on the clock. Here, we investigated the concurrent effects of the inhalational anaesthetic, isoflurane, and light, on mouse behavioural locomotor rhythms and on α1, β3, and γ2 GABAAR subunit expression in the SCN of the mouse brain. Behavioural phase shifts elicited by exposure of mice to four hours of GA (2% isoflurane) and light (400 lux) (n = 60) were determined by recording running wheel activity rhythms in constant conditions (DD). Full phase response curves for the effects of GA + light on behavioural rhythms show that phase shifts persist in anaesthetized mice exposed to light. Daily variation was detected in all three GABAAR subunits in LD 12:12. The γ2 subunit expression was significantly increased following GA in DD (compared to light alone) at times of large behavioural phase delays. We conclude that the phase shifting effect of light on the mouse clock is not blocked by GA administration, and that γ2 may potentially be involved in the phase shifting effect of GA on the clock. Further analysis of GABAAR subunit expression in the SCN will be necessary to confirm its role.


2020 ◽  
Vol 21 (12) ◽  
pp. 4445 ◽  
Author(s):  
Jeffrey Barker ◽  
Rochelle Hines

The modulation of neuronal cell firing is mediated by the release of the neurotransmitter GABA (γ-aminobuytric acid), which binds to two major families of receptors. The ionotropic GABAA receptors (GABAARs) are composed of five distinct subunits that vary in expression by brain region and cell type. The action of GABA on GABAARs is modulated by a variety of clinically and pharmacologically important drugs such as benzodiazepines and alcohol. Exposure to and abuse of these substances disrupts homeostasis and induces plasticity in GABAergic neurotransmission, often via the regulation of receptor expression. Here, we review the regulation of GABAAR subunit expression in adaptive and pathological plasticity, with a focus on substance use. We examine the factors influencing the expression of GABAAR subunit genes including the regulation of the 5′ and 3′ untranslated regions, variations in DNA methylation, immediate early genes and transcription factors that regulate subunit expression, translational and post-translational modifications, and other forms of receptor regulation beyond expression. Advancing our understanding of the factors regulating GABAAR subunit expression during adaptive plasticity, as well as during substance use and withdrawal will provide insight into the role of GABAergic signaling in substance use disorders, and contribute to the development of novel targeted therapies.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Katalin Kerti-Szigeti ◽  
Zoltan Nusser

Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content.


2011 ◽  
Vol 33 (6) ◽  
pp. 641-650 ◽  
Author(s):  
Rosa Maria Facciolo ◽  
Michele Crudo ◽  
Merylin Zizza ◽  
Giuseppina Giusi ◽  
Marcello Canonaco

Sign in / Sign up

Export Citation Format

Share Document