scholarly journals On backward problem for fractional spherically symmetric diffusion equation with observation data of nonlocal type

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Le Dinh Long ◽  
Ho Thi Kim Van ◽  
Ho Duy Binh ◽  
Reza Saadati

AbstractThe main target of this paper is to study a problem of recovering a spherically symmetric domain with fractional derivative from observed data of nonlocal type. This problem can be established as a new boundary value problem where a Cauchy condition is replaced with a prescribed time average of the solution. In this work, we set some of the results above existence and regularity of the mild solutions of the proposed problem in some suitable space. Next, we also show the ill-posedness of our problem in the sense of Hadamard. The regularized solution is given by the fractional Tikhonov method and convergence rate between the regularized solution and the exact solution under a priori parameter choice rule and under a posteriori parameter choice rule.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Le Nhat Huynh ◽  
Nguyen Hoang Luc ◽  
Dumitru Baleanu ◽  
Le Dinh Long

AbstractThis article is devoted to the study of the source function for the Caputo–Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Erdal Karapinar ◽  
Devendra Kumar ◽  
Rathinasamy Sakthivel ◽  
Nguyen Hoang Luc ◽  
N. H. Can

Abstract In this paper, we consider an inverse source problem for the time-space-fractional diffusion equation. Here, in the sense of Hadamard, we prove that the problem is severely ill-posed. By applying the quasi-reversibility regularization method, we propose by this method to solve the problem (1.1). After that, we give an error estimate between the sought solution and regularized solution under a prior parameter choice rule and a posterior parameter choice rule, respectively. Finally, we present a numerical example to find that the proposed method works well.


2019 ◽  
Vol 27 (5) ◽  
pp. 609-621 ◽  
Author(s):  
Fan Yang ◽  
Ni Wang ◽  
Xiao-Xiao Li ◽  
Can-Yun Huang

Abstract In this paper, an inverse problem to identify the initial value for high dimension time fractional diffusion equation on spherically symmetric domain is considered. This problem is ill-posed in the sense of Hadamard, so the quasi-boundary regularization method is proposed to solve the problem. The convergence estimates between the regularization solution and the exact solution are presented under the a priori and a posteriori regularization parameter choice rules. Numerical examples are provided to show the effectiveness and stability of the proposed method.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Tran Thanh Binh ◽  
Nguyen Hoang Luc ◽  
Donal O’Regan ◽  
Nguyen H. Can

AbstractIn this paper, we consider the initial inverse problem for a diffusion equation with a conformable derivative in a general bounded domain. We show that the backward problem is ill-posed, and we propose a regularizing scheme using a fractional Landweber regularization method. We also present error estimates between the regularized solution and the exact solution using two parameter choice rules.


2021 ◽  
Vol 6 (10) ◽  
pp. 11425-11448
Author(s):  
Xuemin Xue ◽  
◽  
Xiangtuan Xiong ◽  
Yuanxiang Zhang ◽  

<abstract><p>The predication of the helium diffusion concentration as a function of a source term in diffusion equation is an ill-posed problem. This is called inverse radiogenic source problem. Although some classical regularization methods have been considered for this problem, we propose two new fractional regularization methods for the purpose of reducing the over-smoothing of the classical regularized solution. The corresponding error estimates are proved under the a-priori and the a-posteriori regularization parameter choice rules. Some numerical examples are shown to display the necessarity of the methods.</p></abstract>


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950058 ◽  
Author(s):  
Salvatore Capozziello ◽  
Konstantinos F. Dialektopoulos ◽  
Orlando Luongo

The accelerating behavior of cosmic fluid opposes gravitational attraction at present epoch, whereas standard gravity is dominant at small scales. As a consequence, there exists a point where the effects are counterbalanced, dubbed turnaround radius, [Formula: see text]. By construction, it provides a bound on maximum structure sizes of the observed universe. Once an upper bound on [Formula: see text] is provided, i.e. [Formula: see text], one can check whether cosmological models guarantee structure formation. Here, we focus on [Formula: see text] gravity, without imposing a priori the form of [Formula: see text]. We thus provide an analytic expression for the turnaround radius in the framework of [Formula: see text] models. To figure this out, we compute the turnaround radius in two distinct cases: (1) under the hypothesis of static and spherically symmetric spacetime, and (2) by using the cosmological perturbation theory. We thus find a criterion to enable large scale structures to be stable in [Formula: see text] models, circumscribing the class of [Formula: see text] theories as suitable alternative to dark energy. In particular, we get that for constant curvature, the viability condition becomes [Formula: see text], with [Formula: see text] and [Formula: see text], respectively, the observed cosmological constant and the Ricci curvature. This prescription rules out models which do not pass the aforementioned [Formula: see text] limit.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 331
Author(s):  
Bernd Hofmann ◽  
Christopher Hofmann

This paper deals with the Tikhonov regularization for nonlinear ill-posed operator equations in Hilbert scales with oversmoothing penalties. One focus is on the application of the discrepancy principle for choosing the regularization parameter and its consequences. Numerical case studies are performed in order to complement analytical results concerning the oversmoothing situation. For example, case studies are presented for exact solutions of Hölder type smoothness with a low Hölder exponent. Moreover, the regularization parameter choice using the discrepancy principle, for which rate results are proven in the oversmoothing case in in reference (Hofmann, B.; Mathé, P. Inverse Probl. 2018, 34, 015007) is compared to Hölder type a priori choices. On the other hand, well-known analytical results on the existence and convergence of regularized solutions are summarized and partially augmented. In particular, a sketch for a novel proof to derive Hölder convergence rates in the case of oversmoothing penalties is given, extending ideas from in reference (Hofmann, B.; Plato, R. ETNA. 2020, 93).


Sign in / Sign up

Export Citation Format

Share Document