scholarly journals Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1517
Author(s):  
Vo Pham Hoang Huy ◽  
Yong Nam Ahn ◽  
Jaehyun Hur

The generation of renewable energy is a promising solution to counter the rapid increase in energy consumption. Nevertheless, the availability of renewable resources (e.g., wind, solar, and tidal) is non-continuous and temporary in nature, posing new demands for the production of next-generation large-scale energy storage devices. Because of their low cost, highly abundant raw materials, high safety, and environmental friendliness, aqueous rechargeable multivalent metal-ion batteries (AMMIBs) have recently garnered immense attention. However, several challenges hamper the development of AMMIBs, including their narrow electrochemical stability, poor ion diffusion kinetics, and electrode instability. Transition metal dichalcogenides (TMDs) have been extensively investigated for applications in energy storage devices because of their distinct chemical and physical properties. The wide interlayer distance of layered TMDs is an appealing property for ion diffusion and intercalation. This review focuses on the most recent advances in TMDs as cathode materials for aqueous rechargeable batteries based on multivalent charge carriers (Zn2+, Mg2+, and Al3+). Through this review, the key aspects of TMD materials for high-performance AMMIBs are highlighted. Furthermore, additional suggestions and strategies for the development of improved TMDs are discussed to inspire new research directions.

2021 ◽  
Vol 9 (1) ◽  
pp. 406-412
Author(s):  
Datong Zhang ◽  
Kentaro Yamamoto ◽  
Aika Ochi ◽  
Yanchang Wang ◽  
Takahiro Yoshinari ◽  
...  

Fluoride ion batteries (FIBs) are regarded as promising energy storage devices, and it is important and urgent to develop cathode materials with high energy densities for use in FIBs.


Author(s):  
Qihao Chen ◽  
Zhiqiang Luo ◽  
Xudong Zhao

Aqueous Zn-ion batteries (AZIBs) are regarded as potential candidates for large-scale energy storage devices due to their low cost, high safety, and abundant Zn resources. The cathode materials of AZIBs...


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Author(s):  
Manika Chaudhary ◽  
Shrestha Tyagi ◽  
Ram K. Gupta ◽  
Beer Pal Singh ◽  
Rahul Singhal

RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


Author(s):  
Manikandan Kandasamy ◽  
Surjit Sahoo ◽  
Saroj K Nayak ◽  
Brahmananda Chakraborty ◽  
Chandra Sekhar Rout

Supercapacitors are widely accepted as one of the energy storage devices in the realm of the sustainable and renewable energy storage world. Supercapacitors emerge as good alternate for traditional capacitors...


2019 ◽  
Vol 7 (41) ◽  
pp. 23378-23415 ◽  
Author(s):  
Cuiping Han ◽  
Hongfei Li ◽  
Ruiying Shi ◽  
Tengfei Zhang ◽  
Jing Tong ◽  
...  

This review provides an up-to-date summary of the progress of organic quinones as electroactive materials for advanced electrochemical energy storage devices.


2018 ◽  
Vol 54 (28) ◽  
pp. 3500-3503 ◽  
Author(s):  
C. V. Manohar ◽  
Tiago Correia Mendes ◽  
Mega Kar ◽  
Dabin wang ◽  
Changlong Xiao ◽  
...  

Sodium ion batteries (SIBs) are widely considered as alternative, sustainable, and cost-effective energy storage devices for large-scale energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document