asymptotic safety
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 35)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Alex Mitchell ◽  
Tim R. Morris ◽  
Dalius Stulga

Abstract We study an f(R) approximation to asymptotic safety, using a family of non-adaptive cutoffs, kept general to test for universality. Matching solutions on the four-dimensional sphere and hyperboloid, we prove properties of any such global fixed point solution and its eigenoperators. For this family of cutoffs, the scaling dimension at large n of the nth eigenoperator, is λn ∝ b n ln n. The coefficient b is non-universal, a consequence of the single-metric approximation. The large R limit is universal on the hyperboloid, but not on the sphere where cutoff dependence results from certain zero modes. For right-sign conformal mode cutoff, the fixed points form at most a discrete set. The eigenoperator spectrum is quantised. They are square integrable under the Sturm-Liouville weight. For wrong sign cutoff, the fixed points form a continuum, and so do the eigenoperators unless we impose square-integrability. If we do this, we get a discrete tower of operators, infinitely many of which are relevant. These are f(R) analogues of novel operators in the conformal sector which were used recently to furnish an alternative quantisation of gravity.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Cristobal Laporte ◽  
Antonio D. Pereira ◽  
Frank Saueressig ◽  
Jian Wang

Abstract Asymptotic Safety provides an elegant mechanism for obtaining a consistent high-energy completion of gravity and gravity-matter systems. Following the initial idea by Steven Weinberg, the construction builds on an interacting fixed point of the theories renormalization group (RG) flow. In this work we use the Wetterich equation for the effective average action to investigate the RG flow of gravity supplemented by a real scalar field. We give a non-perturbative proof that the subspace of interactions respecting the global shift-symmetry of the scalar kinetic term is closed under RG transformations. Subsequently, we compute the beta functions in an approximation comprising the Einstein-Hilbert action supplemented by the shift-symmetric quartic scalar self-interaction and the two lowest order shift-symmetric interactions coupling scalar-bilinears to the spacetime curvature. The computation utilizes the background field method with an arbitrary background, demonstrating that the results are manifestly background independent. Our beta functions exhibit an interacting fixed point suitable for Asymptotic Safety, where all matter interactions are non-vanishing. The presence of this fixed point is rooted in the interplay of the matter couplings which our work tracks for the first time. The relation of our findings with previous results in the literature is discussed in detail and we conclude with a brief outlook on potential phenomenological applications.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Gustavo P. de Brito ◽  
Astrid Eichhorn ◽  
Rafael Robson Lino dos Santos

Abstract We discover a weak-gravity bound in scalar-gravity systems in the asymptotic-safety paradigm. The weak-gravity bound arises in these systems under the approximations we make, when gravitational fluctuations exceed a critical strength. Beyond this critical strength, gravitational fluctuations can generate complex fixed-point values in higher-order scalar interactions. Asymptotic safety can thus only be realized at sufficiently weak gravitational interactions. We find that within truncations of the matter-gravity dynamics, the fixed point lies beyond the critical strength, unless spinning matter, i.e., fermions and vectors, is also included in the model.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 306
Author(s):  
Jesse Daas ◽  
Wouter Oosters ◽  
Frank Saueressig ◽  
Jian Wang

We set up a consistent background field formalism for studying the renormalization group (RG) flow of gravity coupled to Nf Dirac fermions on maximally symmetric backgrounds. Based on Wetterich’s equation, we perform a detailed study of the resulting fixed point structure in a projection including the Einstein–Hilbert action, the fermion anomalous dimension, and a specific coupling of the fermion bilinears to the spacetime curvature. The latter constitutes a mass-type term that breaks chiral symmetry explicitly. Our analysis identified two infinite families of interacting RG fixed points, which are viable candidates to provide a high-energy completion through the asymptotic safety mechanism. The fixed points exist for all values of Nf outside of a small window situated at low values Nf and become weakly coupled in the large Nf-limit. Symmetry-wise, they correspond to “quasi-chiral” and “non-chiral” fixed points. The former come with enhanced predictive power, fixing one of the couplings via the asymptotic safety condition. Moreover, the interplay of the fixed points allows for cross-overs from the non-chiral to the chiral fixed point, giving a dynamical mechanism for restoring the symmetry approximately at intermediate scales. Our discussion of chiral symmetry breaking effects provides strong indications that the topology of spacetime plays a crucial role when analyzing whether quantum gravity admits light chiral fermions.


2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Kamila Kowalska ◽  
Enrico Maria Sessolo

Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 148
Author(s):  
Francesco Bajardi ◽  
Francesco Bascone ◽  
Salvatore Capozziello

It is well known that General Relativity cannot be considered under the standard of a perturbatively renormalizable quantum field theory, but asymptotic safety is taken into account as a possibility for the formulation of gravity as a non-perturbative renormalizable theory. Recently, the entropy argument has however stepped into the discussion claiming for a “no-go” to the asymptotic safety argument. In this paper, we present simple counter-examples, considering alternative theories of gravity, to the entropy argument as further indications, among others, on the possible flows in the assumptions on which the latter is based. We considered different theories, namely curvature-based extensions of General Relativity as f(R), f(G), extensions of teleparallel gravity as f(T), and Horava–Lifshitz gravity, working out the explicit spherically symmetric solutions in order to make a comparison between power counting and the entropy argument. Even in these cases, inconsistencies were found.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 125
Author(s):  
Renata Ferrero ◽  
Martin Reuter

Considering the scale-dependent effective spacetimes implied by the functional renormalization group in d-dimensional quantum Einstein gravity, we discuss the representation of entire evolution histories by means of a single, (d+1)-dimensional manifold furnished with a fixed (pseudo-) Riemannian structure. This “scale-spacetime” carries a natural foliation whose leaves are the ordinary spacetimes seen at a given resolution. We propose a universal form of the higher dimensional metric and discuss its properties. We show that, under precise conditions, this metric is always Ricci flat and admits a homothetic Killing vector field; if the evolving spacetimes are maximally symmetric, their (d+1)-dimensional representative has a vanishing Riemann tensor even. The non-degeneracy of the higher dimensional metric that “geometrizes” a given RG trajectory is linked to a monotonicity requirement for the running of the cosmological constant, which we test in the case of asymptotic safety.


2021 ◽  
Vol 965 ◽  
pp. 115341
Author(s):  
Jan H. Kwapisz ◽  
Krzysztof A. Meissner

Sign in / Sign up

Export Citation Format

Share Document