Some contributions to definability theory for languages with generalized quantifiers

1982 ◽  
Vol 47 (3) ◽  
pp. 572-586
Author(s):  
John T. Baldwin ◽  
Douglas E. Miller

One of the first results in model theory [12] asserts that a first-order sentence is preserved in extensions if and only if it is equivalent to an existential sentence.In the first section of this paper, we analyze a natural program for extending this result to a class of languages extending first-order logic, notably including L(Q) and L(aa), respectively the languages with the quantifiers “there exist un-countably many” and “for almost all countable subsets”.In the second section we answer a question of Bruce [3] by showing that this program cannot resolve the question for L(Q). We also consider whether the natural class of “generalized Σ-sentences” in L(Q) characterizes the class of sentences preserved in extensions, refuting the relativized version but leaving the unrestricted question open.In the third section we show that the analogous class of L(aa)-sentences preserved in extensions does not include (up to elementary equivalence) all such sentences. This particular candidate class was nominated, rather tentatively, by Bruce [3].In the fourth section we show that under rather general conditions, if L is a countably compact extension of first-order logic and T is an ℵ1-categorical first-order theory, then L is trivial relative to T.

2015 ◽  
Vol 21 (2) ◽  
pp. 123-163 ◽  
Author(s):  
ROY DYCKHOFF ◽  
SARA NEGRI

AbstractThat every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem’s argument from 1920 for his “Normal Form” theorem. “Geometric” being the infinitary version of “coherent”, it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms.


Author(s):  
Olivia Caramello

This chapter provides the topos-theoretic background necessary for understanding the contents of the book; the presentation is self-contained and only assumes a basic familiarity with the language of category theory. The chapter begins by reviewing the basic theory of Grothendieck toposes, including the fundamental equivalence between geometric morphisms and flat functors. Then it presents the notion of first-order theory and the various deductive systems for fragments of first-order logic that will be considered in the course of the book, notably including that of geometric logic. Further, it discusses categorical semantics, i.e. the interpretation of first-order theories in categories possessing ‘enough’ structure. Lastly, the key concept of syntactic category of a first-order theory is reviewed; this notion will be used in Chapter 2 for constructing classifying toposes of geometric theories.


Author(s):  
Raymond M. Smullyan

The proof that we have just given of the incompleteness of Peano Arithmetic was based on the underlying assumption that Peano Arithmetic is correct—i.e., that every sentence provable in P.A. is a true sentence. Gödel’s original incompleteness proof involved a much weaker assumption—that of ω-consistency to which we now turn. We consider an arbitrary axiom system S whose formulas are those of Peano Arithmetic, whose axioms include all those of Groups I and II (or alternatively, any set of axioms for first-order logic with identity such that all logically valid formulas are provable from them), and whose inference rules are modus ponens and generalization. (It is also possible to axiomatize first-order logic in such a way that modus ponens is the only inference rule—cf. Quine [1940].) In place of the axioms of Groups III and IV, however, we can take a completely arbitrary set of axioms. Such a system S is an example of what is termed a first-order theory, and we will consider several such theories other than Peano Arithmetic. (For the more general notion of a first-order theory, the key difference is that we do not necessarily start with + and × as the undefined function symbols, nor do we necessarily take ≤ as the undefined predicate symbol. Arbitrary function symbols and predicate symbols can be taken, however, as the undefined function and predicate symbols—cf. Tarski [1953] for details. However, the only theories (or “systems”, as we will call them) that we will have occasion to consider are those whose formulas are those of P.A.) S is called simply consistent (or just “consistent” for short) if no sentence is both provable and refutable in S.


1997 ◽  
Vol 4 (20) ◽  
Author(s):  
Carsten Butz ◽  
Peter T. Johnstone

By a classifying topos for a first-order theory T, we mean a topos<br />E such that, for any topos F, models of T in F correspond exactly to<br />open geometric morphisms F ! E. We show that not every (infinitary)<br />first-order theory has a classifying topos in this sense, but we<br />characterize those which do by an appropriate `smallness condition',<br />and we show that every Grothendieck topos arises as the classifying<br />topos of such a theory. We also show that every first-order theory<br /> has a conservative extension to one which possesses<br /> a classifying topos, and we obtain a Heyting-valued completeness<br /> theorem for infinitary first-order logic.


1989 ◽  
Vol 54 (1) ◽  
pp. 122-137
Author(s):  
Rami Grossberg

AbstractLet L(Q) be first order logic with Keisler's quantifier, in the λ+ interpretation (= the satisfaction is defined as follows: M ⊨ (Qx)φ(x) means there are λ+ many elements in M satisfying the formula φ(x)).Theorem 1. Let λ be a singular cardinal; assume □λ and GCH. If T is a complete theory in L(Q) of cardinality at most λ, and p is an L(Q) 1-type so that T strongly omits p( = p has no support, to be defined in §1), then T has a model of cardinality λ+ in the λ+ interpretation which omits p.Theorem 2. Let λ be a singular cardinal, and let T be a complete first order theory of cardinality λ at most. Assume □λ and GCH. If Γ is a smallness notion then T has a model of cardinality λ+ such that a formula φ(x) is realized by λ+ elements of M iff φ(x) is not Γ-small. The theorem is proved also when λ is regular assuming λ = λ<λ. It is new when λ is singular or when ∣T∣ = λ is regular.Theorem 3. Let λ be singular. If Con(ZFC + GCH + ∃κ) [κ is a strongly compact cardinal]), then the following is consistent: ZFC + GCH + the conclusions of all above theorems are false.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Rivas-Robledo

Abstract In this article I present HYPER-REF, a model to determine the referent of any given expression in First-Order Logic (FOL). I also explain how this model can be used to determine the referent of a first-order theory such as First-Order Arithmetic (FOA). By reference or referent I mean the non-empty set of objects that the syntactical terms of a well-formed formula (wff) pick out given a particular interpretation of the language. To do so, I will first draw on previous work to make explicit the notion of reference and its hyperintensional features. Then I present HYPER-REF and offer a heuristic method for determining the reference of any formula. Then I discuss some of the benefits and most salient features of HYPER-REF, including some remarks on the nature of self-reference in formal languages.


1993 ◽  
Vol 58 (1) ◽  
pp. 291-313 ◽  
Author(s):  
Robert S. Lubarsky

Inductive definability has been studied for some time already. Nonetheless, there are some simple questions that seem to have been overlooked. In particular, there is the problem of the expressibility of the μ-calculus.The μ-calculus originated with Scott and DeBakker [SD] and was developed by Hitchcock and Park [HP], Park [Pa], Kozen [K], and others. It is a language for including inductive definitions with first-order logic. One can think of a formula in first-order logic (with one free variable) as defining a subset of the universe, the set of elements that make it true. Then “and” corresponds to intersection, “or” to union, and “not” to complementation. Viewing the standard connectives as operations on sets, there is no reason not to include one more: least fixed point.There are certain features of the μ-calculus coming from its being a language that make it interesting. A natural class of inductive definitions are those that are monotone: if X ⊃ Y then Γ (X) ⊃ Γ (Y) (where Γ (X) is the result of one application of the operator Γ to the set X). When studying monotonic operations in the context of a language, one would need a syntactic guarantor of monotonicity. This is provided by the notion of positivity. An occurrence of a set variable S is positive if that occurrence is in the scopes of exactly an even number of negations (the antecedent of a conditional counting as a negation). S is positive in a formula ϕ if each occurrence of S is positive. Intuitively, the formula can ask whether x ∊ S, but not whether x ∉ S. Such a ϕ can be considered an inductive definition: Γ (X) = {x ∣ ϕ(x), where the variable S is interpreted as X}. Moreover, this induction is monotone: as X gets bigger, ϕ can become only more true, by the positivity of S in ϕ. So in the μ-calculus, a formula is well formed by definition only if all of its inductive definitions are positive, in order to guarantee that all inductive definitions are monotone.


1980 ◽  
Vol 45 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Matatyahu Rubin ◽  
Saharon Shelah

AbstractTheorem 1. (◊ℵ1,) If B is an infinite Boolean algebra (BA), then there is B1, such that ∣ Aut (B1) ≤∣B1∣ = ℵ1 and 〈B1, Aut (B1)〉 ≡ 〈B, Aut(B)〉.Theorem 2. (◊ℵ1) There is a countably compact logic stronger than first-order logic even on finite models.This partially answers a question of H. Friedman. These theorems appear in §§1 and 2.Theorem 3. (a) (◊ℵ1) If B is an atomic ℵ-saturated infinite BA, Ψ Є Lω1ω and 〈B, Aut (B)〉 ⊨Ψ then there is B1, Such that ∣Aut(B1)∣ ≤ ∣B1∣ =ℵ1, and 〈B1, Aut(B1)〉⊨Ψ. In particular if B is 1-homogeneous so is B1. (b) (a) holds for B = P(ω) even if we assume only CH.


1982 ◽  
Vol 34 (2) ◽  
pp. 500-505 ◽  
Author(s):  
Stanley Burris ◽  
John Lawrence

In this paper we will give brief proofs of two results on the undecidability of a first-order theory using a construction which we call a modified Boolean power. Modified Boolean powers were introduced by Burris in late 1978, and the first results were announced in [2]. Subsequently we succeeded in using this construction to prove the results in this paper, namely Ershov's theorem that every variety of groups containing a finite non-abelian group has an undecidable theory, and Zamjatin's theorem that a variety of rings with unity which is not generated by finitely many finite fields has an undecidable theory. Later McKenzie further modified the construction mentioned above, and combined it with a variant of one of Zamjatin's constructions to prove the sweeping main result of [3]. The proofs given here have the advantage (over the original proofs) that they use a single construction.


Sign in / Sign up

Export Citation Format

Share Document