vimentin filaments
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 11)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Filipe Nunes Vicente ◽  
Mickael Lelek ◽  
Jean-Yves Tinevez ◽  
Quang D. Tran ◽  
Gerard Pehau-Arnaudet ◽  
...  

Intermediate filaments (IF) are involved in key cellular functions including polarization, migration, and protection against large deformations. These functions are related to their remarkable ability to extend without breaking, a capacity that should be determined by the molecular organization of subunits within filaments. However, this structure-mechanics relationship remains poorly understood at the molecular level. Here, using super-resolution microscopy (SRM), we show that vimentin filaments exhibit a ~49 nm axial repeat both in cells and in vitro. As unit-length-filaments (ULFs) precursors were measured at ~59 nm, this demonstrates a partial overlap of ULFs during filament assembly. Using an SRM-compatible stretching device, we also provide evidence that the extensibility of vimentin is due to the unfolding of its subunits and not to their sliding, thus establishing a direct link between the structural organization and its mechanical properties. Overall, our results pave the way for future studies of IF assembly, mechanical and structural properties in cells.


2021 ◽  
Author(s):  
Matthias Eibauer ◽  
Miriam S. Weber ◽  
Yagmur Turgay ◽  
Suganya Sivagurunathan ◽  
Robert D. Goldman ◽  
...  

Intermediate filaments are integral components of the cytoskeleton in metazoan cells. Due to their specific viscoelastic properties they are principal contributors to flexibility and tear strength of cells and tissues. Vimentin, an intermediate filament protein expressed in fibroblasts and endothelial cells, assembles into ~11 nm thick biopolymers, that are involved in a wide variety of cellular functions in health and disease. Here, we reveal the structure of in-situ polymerized vimentin filaments to a subnanometer resolution by applying cryo-electron tomography to mouse embryonic fibroblasts grown on electron microscopy grids. We show that vimentin filaments are tube-like assemblies with a well-defined helical symmetry. Their structure is comprised of five octameric, spring-like protofibrils harboring 40 vimentin polypeptide chains in cross-section. The protofibrils are connected by the intrinsically disordered head and helix 1A domains of vimentin. Individual filaments display two polymerization states characterized by either the presence or absence of a luminal density along the helical axis. The structure of vimentin filaments unveils the generic building plan of the intermediate filament superfamily in molecular details.


2020 ◽  
Vol 21 (20) ◽  
pp. 7436
Author(s):  
Xuemeng Shi ◽  
Changyuan Fan ◽  
Yaming Jiu

Both the mechanosensitive vimentin cytoskeleton and endocytic caveolae contribute to various active processes such as cell migration, morphogenesis, and stress response. However, the crosstalk between these two systems has remained elusive. Here, we find that the subcellular expression between vimentin and caveolin-1 is mutual exclusive, and vimentin filaments physically arrest the cytoplasmic motility of caveolin-1 vesicles. Importantly, vimentin depletion increases the phosphorylation of caveolin-1 on site Tyr14, and restores the compromised cell migration rate and directionality caused by caveolin-1 deprivation. Moreover, upon hypo-osmotic shock, vimentin-knockout recovers the reduced intracellular motility of caveolin-1 vesicles. In contrary, caveolin-1 depletion shows no effect on the expression, phosphorylation (on sites Ser39, Ser56, and Ser83), distribution, solubility, and cellular dynamics of vimentin filaments. Taken together, our data reveals a unidirectional regulation of vimentin to caveolin-1, at least on the cellular level.


Author(s):  
Jennifer J Wood ◽  
Ian J White ◽  
Jason Mercer

AbstractThe replication and assembly of vaccinia virus (VACV), the prototypic poxvirus, occurs exclusively in the cytoplasm of host cells. While the role of cellular cytoskeletal components in these processes remains poorly understood, vimentin - a type III intermediate filament - has been shown to associate with viral replication sites and to be incorporated into mature VACV virions. Here we employed chemical and genetic approaches to further investigate the role of vimentin during the VACV lifecycle. The collapse of vimentin filaments, using acrylamide, was found to inhibit VACV infection at the level of genome replication, intermediate- and late- gene expression. However, we found that CRISPR-mediated knockout of vimentin did not impact VACV replication. Combining these tools, we demonstrate that acrylamide treatment results in the formation of antiviral granules (AVGs) known to mediate translational inhibition of many viruses. We conclude that vimentin is dispensable for poxvirus replication and assembly and that acrylamide, as a potent inducer of AVGs during VACV infection, serves to bolster cell’s antiviral response to poxvirus infection.Summary StatementAcrylamide inhibits poxvirus replication by inducing anti-viral granules and blocking translation. This inhibition is independent of the effect of acrylamide on vimentin filaments which were found to be dispensable for viral replication and assembly.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofia Duarte ◽  
Álvaro Viedma-Poyatos ◽  
Elena Navarro-Carrasco ◽  
Alma E. Martínez ◽  
María A. Pajares ◽  
...  

Abstract The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex.


2019 ◽  
Author(s):  
Charlotta Lorenz ◽  
Johanna Forsting ◽  
Anna V. Schepers ◽  
Julia Kraxner ◽  
Susanne Bauch ◽  
...  

The cytoskeleton is a composite network of three types of protein filaments, among which in-termediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures, but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α-helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.


Oncogene ◽  
2019 ◽  
Vol 38 (21) ◽  
pp. 4197-4198
Author(s):  
Cheng-Yi Yang ◽  
Po-Wei Chang ◽  
Wen-Hsin Hsu ◽  
Hsuan-Chia Chang ◽  
Chien-Lin Chen ◽  
...  

Oncogene ◽  
2019 ◽  
Vol 38 (21) ◽  
pp. 4075-4094 ◽  
Author(s):  
Cheng-Yi Yang ◽  
Po-Wei Chang ◽  
Wen-Hsin Hsu ◽  
Hsuan-Chia Chang ◽  
Chien-Lin Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document