Advances and Applications in Deep Learning
Latest Publications


TOTAL DOCUMENTS

6
(FIVE YEARS 6)

H-INDEX

0
(FIVE YEARS 0)

Published By Intechopen

9781839628788, 9781839628795

Author(s):  
Md Nazmus Saadat ◽  
Muhammad Shuaib

The aim of this chapter is to introduce newcomers to deep learning, deep learning platforms, algorithms, applications, and open-source datasets. This chapter will give you a broad overview of the term deep learning, in context to deep learning machine learning, and Artificial Intelligence (AI) is also introduced. In Introduction, there is a brief overview of the research achievements of deep learning. After Introduction, a brief history of deep learning has been also discussed. The history started from a famous scientist called Allen Turing (1951) to 2020. In the start of a chapter after Introduction, there are some commonly used terminologies, which are used in deep learning. The main focus is on the most recent applications, the most commonly used algorithms, modern platforms, and relevant open-source databases or datasets available online. While discussing the most recent applications and platforms of deep learning, their scope in future is also discussed. Future research directions are discussed in applications and platforms. The natural language processing and auto-pilot vehicles were considered the state-of-the-art application, and these applications still need a good portion of further research. Any reader from undergraduate and postgraduate students, data scientist, and researchers would be benefitted from this.


Author(s):  
Wen Xu ◽  
Jing He ◽  
Yanfeng Shu

Transfer learning is an emerging technique in machine learning, by which we can solve a new task with the knowledge obtained from an old task in order to address the lack of labeled data. In particular deep domain adaptation (a branch of transfer learning) gets the most attention in recently published articles. The intuition behind this is that deep neural networks usually have a large capacity to learn representation from one dataset and part of the information can be further used for a new task. In this research, we firstly present the complete scenarios of transfer learning according to the domains and tasks. Secondly, we conduct a comprehensive survey related to deep domain adaptation and categorize the recent advances into three types based on implementing approaches: fine-tuning networks, adversarial domain adaptation, and sample-reconstruction approaches. Thirdly, we discuss the details of these methods and introduce some typical real-world applications. Finally, we conclude our work and explore some potential issues to be further addressed.


Author(s):  
Soohyun Park ◽  
Dohyun Kim ◽  
Joongheon Kim

This chapter introduces a dynamic and low-complexity decision-making algorithm which aims at time-average utility maximization in real-time deep learning platforms, inspired by Lyapunov optimization. In deep learning computation, large delays can happen due to the fact that it is computationally expensive. Thus, handling the delays is an important issue for the commercialization of deep learning algorithms. In this chapter, the proposed algorithm observes system delays at first formulated by queue-backlog, and then it dynamically conducts sequential decision-making under the tradeoff between utility (i.e., deep learning performance) and system delays. In order to evaluate the proposed decision-making algorithm, the performance evaluation results with real-world data are presented under the applications of super-resolution frameworks. Lastly, this chapter summarizes that the Lyapunov optimization algorithm can be used in various emerging applications.


Author(s):  
Lujun Huang ◽  
Lei Xu ◽  
Andrey E. Miroshnichenko

Deep learning has become a vital approach to solving a big-data-driven problem. It has found tremendous applications in computer vision and natural language processing. More recently, deep learning has been widely used in optimising the performance of nanophotonic devices, where the conventional computational approach may require much computation time and significant computation source. In this chapter, we briefly review the recent progress of deep learning in nanophotonics. We overview the applications of the deep learning approach to optimising the various nanophotonic devices. It includes multilayer structures, plasmonic/dielectric metasurfaces and plasmonic chiral metamaterials. Also, nanophotonic can directly serve as an ideal platform to mimic optical neural networks based on nonlinear optical media, which in turn help to achieve high-performance photonic chips that may not be realised based on conventional design method.


Author(s):  
Evren Dağlarli

The explainable artificial intelligence (xAI) is one of the interesting issues that has emerged recently. Many researchers are trying to deal with the subject with different dimensions and interesting results that have come out. However, we are still at the beginning of the way to understand these types of models. The forthcoming years are expected to be years in which the openness of deep learning models is discussed. In classical artificial intelligence approaches, we frequently encounter deep learning methods available today. These deep learning methods can yield highly effective results according to the data set size, data set quality, the methods used in feature extraction, the hyper parameter set used in deep learning models, the activation functions, and the optimization algorithms. However, there are important shortcomings that current deep learning models are currently inadequate. These artificial neural network-based models are black box models that generalize the data transmitted to it and learn from the data. Therefore, the relational link between input and output is not observable. This is an important open point in artificial neural networks and deep learning models. For these reasons, it is necessary to make serious efforts on the explainability and interpretability of black box models.


Author(s):  
Wen Xu ◽  
Jing He ◽  
Yanfeng Shu ◽  
Hui Zheng

Deep Learning, also known as deep representation learning, has dramatically improved the performances on a variety of learning tasks and achieved tremendous successes in the past few years. Specifically, artificial neural networks are mainly studied, which mainly include Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Among these networks, CNNs got the most attention due to the kernel methods with the weight sharing mechanism, and achieved state-of-the-art in many domains, especially computer vision. In this research, we conduct a comprehensive survey related to the recent improvements in CNNs, and we demonstrate these advances from the low level to the high level, including the convolution operations, convolutional layers, architecture design, loss functions, and advanced applications.


Sign in / Sign up

Export Citation Format

Share Document