Computational and Mathematical Organization Theory
Latest Publications


TOTAL DOCUMENTS

442
(FIVE YEARS 61)

H-INDEX

33
(FIVE YEARS 2)

Published By Springer-Verlag

1572-9346, 1381-298x

Author(s):  
Emanuele Borgonovo ◽  
Marco Pangallo ◽  
Jan Rivkin ◽  
Leonardo Rizzo ◽  
Nicolaj Siggelkow

AbstractAgent-based models (ABMs) are increasingly used in the management sciences. Though useful, ABMs are often critiqued: it is hard to discern why they produce the results they do and whether other assumptions would yield similar results. To help researchers address such critiques, we propose a systematic approach to conducting sensitivity analyses of ABMs. Our approach deals with a feature that can complicate sensitivity analyses: most ABMs include important non-parametric elements, while most sensitivity analysis methods are designed for parametric elements only. The approach moves from charting out the elements of an ABM through identifying the goal of the sensitivity analysis to specifying a method for the analysis. We focus on four common goals of sensitivity analysis: determining whether results are robust, which elements have the greatest impact on outcomes, how elements interact to shape outcomes, and which direction outcomes move when elements change. For the first three goals, we suggest a combination of randomized finite change indices calculation through a factorial design. For direction of change, we propose a modification of individual conditional expectation (ICE) plots to account for the stochastic nature of the ABM response. We illustrate our approach using the Garbage Can Model, a classic ABM that examines how organizations make decisions.


Author(s):  
Aurora C. Schmidt ◽  
Christopher J. Cameron ◽  
Corey Lowman ◽  
Joshua Brulé ◽  
Amruta J. Deshpande ◽  
...  

Author(s):  
Scott Rager ◽  
Alice Leung ◽  
Shannon Pinegar ◽  
Jennifer Mangels ◽  
Marshall Scott Poole ◽  
...  
Keyword(s):  

Author(s):  
Svitlana Volkova ◽  
Dustin Arendt ◽  
Emily Saldanha ◽  
Maria Glenski ◽  
Ellyn Ayton ◽  
...  

AbstractGround Truth program was designed to evaluate social science modeling approaches using simulation test beds with ground truth intentionally and systematically embedded to understand and model complex Human Domain systems and their dynamics Lazer et al. (Science 369:1060–1062, 2020). Our multidisciplinary team of data scientists, statisticians, experts in Artificial Intelligence (AI) and visual analytics had a unique role on the program to investigate accuracy, reproducibility, generalizability, and robustness of the state-of-the-art (SOTA) causal structure learning approaches applied to fully observed and sampled simulated data across virtual worlds. In addition, we analyzed the feasibility of using machine learning models to predict future social behavior with and without causal knowledge explicitly embedded. In this paper, we first present our causal modeling approach to discover the causal structure of four virtual worlds produced by the simulation teams—Urban Life, Financial Governance, Disaster and Geopolitical Conflict. Our approach adapts the state-of-the-art causal discovery (including ensemble models), machine learning, data analytics, and visualization techniques to allow a human-machine team to reverse-engineer the true causal relations from sampled and fully observed data. We next present our reproducibility analysis of two research methods team’s performance using a range of causal discovery models applied to both sampled and fully observed data, and analyze their effectiveness and limitations. We further investigate the generalizability and robustness to sampling of the SOTA causal discovery approaches on additional simulated datasets with known ground truth. Our results reveal the limitations of existing causal modeling approaches when applied to large-scale, noisy, high-dimensional data with unobserved variables and unknown relationships between them. We show that the SOTA causal models explored in our experiments are not designed to take advantage from vasts amounts of data and have difficulty recovering ground truth when latent confounders are present; they do not generalize well across simulation scenarios and are not robust to sampling; they are vulnerable to data and modeling assumptions, and therefore, the results are hard to reproduce. Finally, when we outline lessons learned and provide recommendations to improve models for causal discovery and prediction of human social behavior from observational data, we highlight the importance of learning data to knowledge representations or transformations to improve causal discovery and describe the benefit of causal feature selection for predictive and prescriptive modeling.


Author(s):  
H. Van Dyke Parunak ◽  
Jason Greanya ◽  
Peggy McCarthy ◽  
Jonathan A. Morell ◽  
Srikanth Nadella ◽  
...  
Keyword(s):  

Author(s):  
Andreas Züfle ◽  
Carola Wenk ◽  
Dieter Pfoser ◽  
Andrew Crooks ◽  
Joon-Seok Kim ◽  
...  
Keyword(s):  

Author(s):  
Friederike Wall

AbstractComputational models of managerial search often build on backward-looking search based on hill-climbing algorithms. Regardless of its prevalence, there is some evidence that this family of algorithms does not universally represent managers’ search behavior. Against this background, the paper proposes an alternative algorithm that captures key elements of Simon’s concept of satisficing which received considerable support in behavioral experiments. The paper contrasts the satisficing-based algorithm to two variants of hill-climbing search in an agent-based model of a simple decision-making organization. The model builds on the framework of NK fitness landscapes which allows controlling for the complexity of the decision problem to be solved. The results suggest that the model’s behavior may remarkably differ depending on whether satisficing or hill-climbing serves as an algorithmic representation for decision-makers’ search. Moreover, with the satisficing algorithm, results indicate oscillating aspiration levels, even to the negative, and intense—and potentially destabilizing—search activities when intra-organizational complexity increases. Findings may shed some new light on prior computational models of decision-making in organizations and point to avenues for future research.


Sign in / Sign up

Export Citation Format

Share Document