scholarly journals Klotho-Dependent Role of 1,25(OH)2D3 in the Brain

Neurosignals ◽  
2021 ◽  
Vol 29 (1) ◽  
pp. 14-23

The antiaging protein Klotho is encoded by the Klotho gene first identified as an 'aging suppressor', in mice. Klotho deficiency is involved in premature aging and early death, while its overexpression is related to longevity. Klotho is mostly expressed in the kidney, but also in the brain, and in other organs. Two forms of Klotho, the cell membrane and secreted form, have pleiotropic activities that include regulation of general metabolism, oxidative stress, and mineral metabolism that correlates with its effect on accelerating aging. Membrane Klotho serves as an obligate co-receptor for the fibroblast growth factor (FGF), while secreted Klotho plays its role as a humoral factor. Klotho protein participates in the regulation of several biological activities, including regulation of calcium-phosphate homeostasis and PTH as well as vitamin D metabolism. The active form of vitamin D, 1,25(OH)2D3 (1,25-dihydroxy-vitamin D3 = calcitriol), acts as a neurosteroid that participates in the regulation of multiple brain functions. It provides neuroprotection and suppresses oxidative stress, inhibits inflammation and inflammatory mediators, and stimulates various neurotrophins. Calcitriol is involved in many brain-related diseases, including multiple sclerosis, Alzheimer´s disease, Parkinson´s disease, and schizophrenia. This review covers the most recent advances in Klotho research and discusses Klotho-dependent roles of calcitriol in neuro-psycho-pathophysiology.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Milica Velimirović ◽  
Gordana Jevtić Dožudić ◽  
Vesna Selaković ◽  
Tihomir Stojković ◽  
Nela Puškaš ◽  
...  

Decreased blood flow in the brain leads to a rapid increase in reactive oxygen species (ROS). NADPH oxidase (NOX) is an enzyme family that has the physiological function to produce ROS. NOX2 and NOX4 overexpression is associated with aggravated ischemic injury, while NOX2/4-deficient mice had reduced stroke size. Dysregulation of matrix metalloproteinases (MMPs) contributes to tissue damage. The active form of vitamin D3 expresses neuroprotective, immunomodulatory, and anti-inflammatory effects in the CNS. The present study examines the effects of the vitamin D3 pretreatment on the oxidative stress parameters and the expression of NOX subunits, MMP9, microglial marker Iba1, and vitamin D receptor (VDR), in the cortex and hippocampus of Mongolian gerbils subjected to ten minutes of global cerebral ischemia, followed by 24 hours of reperfusion. The ischemia/reperfusion procedure has induced oxidative stress, changes in the expression of NOX2 subunits and MMP9 in the brain, and increased MMP9 activity in the serum of experimental animals. Pretreatment with vitamin D3 was especially effective on NOX2 subunits, MMP9, and the level of malondialdehyde and superoxide anion. These results outline the significance of the NOX and MMP9 investigation in brain ischemia and the importance of adequate vitamin D supplementation in ameliorating the injury caused by I/R.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
José Pedraza-Chaverri ◽  
Laura G. Sánchez-Lozada ◽  
Horacio Osorio-Alonso ◽  
Edilia Tapia ◽  
Alexandra Scholze

In chronic kidney disease inflammatory processes and stimulation of immune cells result in overproduction of free radicals. In combination with a reduced antioxidant capacity this causes oxidative stress. This review focuses on current pathogenic concepts of oxidative stress for the decline of kidney function and development of cardiovascular complications. We discuss the impact of mitochondrial alterations and dysfunction, a pathogenic role for hyperuricemia, and disturbances of vitamin D metabolism and signal transduction. Recent antioxidant therapy options including the use of vitamin D and pharmacologic therapies for hyperuricemia are discussed. Finally, we review some new therapy options in diabetic nephropathy including antidiabetic agents (noninsulin dependent), plant antioxidants, and food components as alternative antioxidant therapies.


2021 ◽  
Vol 38 (1) ◽  
pp. 161-167
Author(s):  
S. G. Shulkina ◽  
D. O. Sirin ◽  
E. N. Smirnova ◽  
V. G. Zhelobov ◽  
N. Yu. Kolomeets ◽  
...  

Hyperparathyroidism is an endocrine disease characterized by excessive production of parathyroid hormone in the main cells of the parathyroid glands. Depending on the cause of this disease, there are primary, secondary (SHPT) and tertiary hyperparathyroidism. The most common causes of SHPT are vitamin D deficiency and chronic kidney disease (CKD). Vitamin D is converted to its active form by hydroxylation in the renal tubules. Developmental abnormalities and chronic kidney diseases lead to atrophy of the tubular epithelial cells that causes a violation of vitamin D metabolism and the development of SHPT, which in turn are accompanied by a violation of calcium-phosphorus metabolism and a syndrome of musculoskeletal disorders. This article presents an analysis of a clinical case of a patient diagnosed secondary hyperparathyroidism against the background of vitamin D deficiency combined with polycystic kidney disease. This clinical case reflects the complexity of the differential diagnosis of the disease and the tactics of patient's management.


2021 ◽  
pp. 26-36
Author(s):  
Mariya Aleksandrovna Bochkareva ◽  
Svetlana Viktorovna Bulgakova ◽  
Anula Viktorovna Melikova

Allergic diseases, in particular, atopic dermatitis, are becoming a global health problem due to the rapid spread, both as an independent disease and as a predictor of the development of bronchial asthma. Discovery of all the processes of the pathogenesis of atopic dermatitis will provide great opportunities for the prevention and treatment of this disease. In this regard, special attention is paid to vitamin D, which becomes more and more popular all over the world every year. In addition to the known and studied consequences of vitamin D deficiency for skeletal system health and mineral metabolism, recent studies have shown that calcitriol, the active form of vitamin D, is involved in many biological processes in the body, including the regulation of the immune system. The discovery of the vitamin D receptor on various cells of the body opens up new prospects for studying the course of various diseases, such as diabetes mellitus, vascular atherosclerosis, obesity, autoimmune diseases, oncology and allergies. The review will be devoted to this problem. 38 foreign and 2 domestic sources are cited.


2021 ◽  
Vol 11 ◽  
Author(s):  
Omar M.E. Abdel-Salam ◽  
Eman R. Youness ◽  
Nadia A. Mohammed ◽  
Amr M.M. Ibrahim

Systemic inflammation causes brain oxidative stress, a prerequisite for neurodegeneration. In this study, we investigated the effect of the anesthetic agents propofol and fentanyl on brain oxidative stress during mild systemic endotoxemia induced by lipopolysaccharide (LPS) endotoxin. For this purpose, rats were administered LPS (400 μg/kg, intraperitoneally; i.p.), treated at the same time with different doses of propofol or fentanyl, i.p., and euthanized 4 h later. Other groups were treated with the saline, only propofol, or only fentanyl. Oxidative stress markers including malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) were determined. In addition, nuclear factor kappaB (NF-kB), paraoxonase-1 (PON-1), and butyrylcholinesterase (BChE) activities were measured in the brain tissue. Results showed that compared with the saline group, administration of LPS caused a marked and significant increase in brain MDA and NO combined with depletion of GSH and decreased PON-1 and BChE activities. Additionally, the active form of NF-kB was significantly increased in the brain of LPS only-treated rats. Treatment with propofol or fentanyl led to a marked and significant decrease in the levels of brain MDA and NO together with a significant increase in GSH and restoration of PON-1 and BChE activities. Furthermore, lower levels of active form of NF-kB were found following treatment with propofol or fentanyl compared with those in the LPS only group. Collectively, these results suggest that propofol and fentanyl exhibit an antioxidant action and attenuate the endotoxin-induced brain oxidative stress.


Author(s):  
Ravi Ranjan Kumar ◽  
Lovekesh Singh ◽  
Amandeep Thakur ◽  
Shamsher Singh ◽  
Bhupinder Kumar

Background: Vitamins are the micronutrients required for boosting the immune system and managing any future infection. Vitamins are involved in neurogenesis, a defense mechanism working in neurons, metabolic reactions, neuronal survival, and neuronal transmission. Their deficiency leads to abnormal functions in the brain like oxidative stress, mitochondrial dysfunction, accumulation of proteins (synuclein, Aβ plaques), neurodegeneration, and excitotoxicity. Methods: In this review, we have compiled various reports collected from PubMed, Scholar Google, Research gate, and Science direct. The findings were evaluated, compiled, and represented in this manuscript. Conclusion: The deficiency of vitamins in the body causes various neurological disorders like Alzheimer’s disease, Parkinson’s disease, Huntington's disease, and depression. We have discussed the role of vitamins in neurological disorders and the normal human body. Depression is linked to a deficiency of vitamin-C and vitamin B. In the case of Alzheimer’s disease, there is a lack of vitamin-B1, B12, and vitamin-A, which results in Aβ-plaques. Similarly, in Parkinson’s disease, vitamin-D deficiency leads to a decrease in the level of dopamine, and imbalance in vitamin D leads to accumulation of synuclein. In MS, Vitamin-C and Vitamin-D deficiency causes demyelination of neurons. In Huntington's disease, vitamin- C deficiency decreases the antioxidant level, enhances oxidative stress, and disrupts the glucose cycle. Vitamin B5 deficiency in Huntington's disease disrupts the synthesis of acetylcholine and hormones in the brain.


2020 ◽  
Vol 98 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Mihaela Ionica ◽  
Oana M. Aburel ◽  
Adrian Vaduva ◽  
Alexandra Petrus ◽  
Sonia Rațiu ◽  
...  

Obesity is an age-independent, lifestyle-triggered, pandemic disease associated with both endothelial and visceral adipose tissue (VAT) dysfunction leading to cardiometabolic complications mediated via increased oxidative stress and persistent chronic inflammation. The purpose of the present study was to assess the oxidative stress in VAT and vascular samples and the effect of in vitro administration of vitamin D. VAT and mesenteric artery branches were harvested during abdominal surgery performed on patients referred for general surgery (n = 30) that were randomized into two subgroups: nonobese and obese. Serum levels of C-reactive protein (CRP) and vitamin D were measured. Tissue samples were treated or not with the active form of vitamin D: 1,25(OH)2D3 (100 nmol/L, 12 h). The main findings are that in obese patients, (i) a low vitamin D status was associated with increased inflammatory markers and reactive oxygen species generation in VAT and vascular samples and (ii) in vitro incubation with vitamin D alleviated oxidative stress in VAT and vascular preparations and also improved the vascular function. We report here that the serum level of vitamin D is inversely correlated with the magnitude of oxidative stress in the adipose tissue. Ex vivo treatment with active vitamin D mitigated obesity-related oxidative stress.


2014 ◽  
Vol 231 (17) ◽  
pp. 3445-3451 ◽  
Author(s):  
Pei Jiang ◽  
Ying Xue ◽  
Huan-De Li ◽  
Yi-Ping Liu ◽  
Hua-Lin Cai ◽  
...  

2007 ◽  
Vol 13 (5) ◽  
pp. 670-672 ◽  
Author(s):  
M.S. Barnes ◽  
M.P. Bonham ◽  
P.J. Robson ◽  
J.J. Strain ◽  
A.S. Lowe-Strong ◽  
...  

Populations with insufficient ultraviolet exposure and who consume diets low in vitamin D have low vitamin D status (plasma 25-hydroxyvitamin D (25(OH)D) concentrations) and a reported higher incidence of multiple sclerosis (MS). The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is an effective anti-inflammatory molecule. No research to date has assessed 1,25(OH)2D3 concentrations in individuals with MS. In this study, plasma concentrations of 25(OH)D, 1,25(OH)2D 3 and parathyroid hormone (PTH) were measured in 29 individuals with MS and 22 age- and sex-matched control volunteers. There were no significant differences in plasma PTH, 25(OH)D and 1,25(OH)2D3 concentrations between individuals with MS and control volunteers. Women with MS had significantly higher 25(OH)D and 1,25(OH)2D3 concentrations than men with MS (79.1 ±45.4 versus 50.2±15.3 nmol/L, P=0.019 and 103.8± 36.8 versus 70.4±28.7 pmol/L, P=0.019, respectively). There was a significant positive correlation between 25(OH)D and 1,25(OH)2D 3 concentrations in all subjects (r=0.564, P=0.000), but secondary analysis revealed that the correlation was driven by women with MS (r=0.677, P= 0.001). Significant sex differences in vitamin D metabolism were observed and were most marked in individuals with MS, suggesting that vitamin D requirements may differ between the sexes, as well as by underlying disease state. Multiple Sclerosis 2007; 13: 670-672. http://msj.sagepub.com


2021 ◽  
Vol 15 ◽  
Author(s):  
Gilciane Ceolin ◽  
Giulia Pipolo Rodrigues Mano ◽  
Natália Schmitt Hames ◽  
Luciana da Conceição Antunes ◽  
Elisa Brietzke ◽  
...  

Graphical AbstractRole of vitamin D in the development of depressive symptoms. The synthesis of vitamin D from sunlight is impaired by lockdown and social distance measures imposed by the governments around the world during COVID-10 pandemic. Endogenous vitamin D synthesis initiates in the skin when 7-dehydrocholesterol (7-DHC) is converted in pre-vitamin D3 and then vitamin D3 [25(OH)D3]. It is transported through blood circulation by the vitamin D binding protein (VDBP) to the liver, the kidney, and the brain, where can be converted in its the active form [1,25(OH)2D3]. In the brain, the biological effects of 1,25(OH)2D3 are largely mediated by vitamin D receptor (VDR) through genomic mechanisms, which influence several aspects of serotonin metabolism, such as increasing serotonin synthesis by induction of the tryptophan hydroxylase 2 (TPH2) gene expression; influencing the expression of serotonin reuptake transporter (SERT) and the levels of monoamine oxidase-A (MAO-A), responsible to serotonin catabolism; and indirectly may regulate the synthesis of melatonin that improve the circadian rhythm. This mechanism can be impaired during social isolation and consequent reduction of vitamin D due to low sun exposure during the pandemic, which could contribute to the development of depressive symptoms.


Sign in / Sign up

Export Citation Format

Share Document