Precision Medicine, Genome Sequencing, and Improved Population Health

JAMA ◽  
2018 ◽  
Vol 319 (19) ◽  
pp. 1979 ◽  
Author(s):  
W. Gregory Feero ◽  
Catherine A. Wicklund ◽  
David Veenstra
Author(s):  
Ik-Whan G. Kwon ◽  
Sung-Ho Kim ◽  
David Martin

The COVID-19 pandemic has altered healthcare delivery platforms from traditional face-to-face formats to online care through digital tools. The healthcare industry saw a rapid adoption of digital collaborative tools to provide care to patients, regardless of where patients or clinicians were located, while mitigating the risk of exposure to the coronavirus. Information technologies now allow healthcare providers to continue a high level of care for their patients through virtual visits, and to collaborate with other providers in the networks. Population health can be improved by social determinants of health and precision medicine working together. However, these two health-enhancing constructs work independently, resulting in suboptimal health results. This paper argues that artificial intelligence can provide clinical–community linkage that enhances overall population health. An exploratory roadmap is proposed.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100765
Author(s):  
Yi-Hsiang Hsu ◽  
Joyce W. Tang ◽  
Hanfei Xu ◽  
Cecily Choy ◽  
May Montasser ◽  
...  

2020 ◽  
Vol 117 (6) ◽  
pp. 3053-3062 ◽  
Author(s):  
Ying-Chen Claire Hou ◽  
Hung-Chun Yu ◽  
Rick Martin ◽  
Elizabeth T. Cirulli ◽  
Natalie M. Schenker-Ahmed ◽  
...  

Genome sequencing has established clinical utility for rare disease diagnosis. While increasing numbers of individuals have undergone elective genome sequencing, a comprehensive study surveying genome-wide disease-associated genes in adults with deep phenotyping has not been reported. Here we report the results of a 3-y precision medicine study with a goal to integrate whole-genome sequencing with deep phenotyping. A cohort of 1,190 adult participants (402 female [33.8%]; mean age, 54 y [range 20 to 89+]; 70.6% European) had whole-genome sequencing, and were deeply phenotyped using metabolomics, advanced imaging, and clinical laboratory tests in addition to family/medical history. Of 1,190 adults, 206 (17.3%) had at least 1 genetic variant with pathogenic (P) or likely pathogenic (LP) assessment that suggests a predisposition of genetic risk. A multidisciplinary clinical team reviewed all reportable findings for the assessment of genotype and phenotype associations, and 137 (11.5%) had genotype and phenotype associations. A high percentage of genotype and phenotype associations (>75%) was observed for dyslipidemia (n = 24), cardiomyopathy, arrhythmia, and other cardiac diseases (n = 42), and diabetes and endocrine diseases (n = 17). A lack of genotype and phenotype associations, a potential burden for patient care, was observed in 69 (5.8%) individuals with P/LP variants. Genomics and metabolomics associations identified 61 (5.1%) heterozygotes with phenotype manifestations affecting serum metabolite levels in amino acid, lipid and cofactor, and vitamin pathways. Our descriptive analysis provides results on the integration of whole-genome sequencing and deep phenotyping for clinical assessments in adults.


2017 ◽  
Vol 31 (2) ◽  
pp. 539-544 ◽  
Author(s):  
D.A. Mauler ◽  
B. Gandolfi ◽  
C.R. Reinero ◽  
D.P. O'Brien ◽  
J.L. Spooner ◽  
...  

2018 ◽  
Vol 50 (8) ◽  
pp. 563-579 ◽  
Author(s):  
Jeremy W. Prokop ◽  
Thomas May ◽  
Kim Strong ◽  
Stephanie M. Bilinovich ◽  
Caleb Bupp ◽  
...  

Genomic sequencing has undergone massive expansion in the past 10 yr, from a rarely used research tool into an approach that has broad applications in a clinical setting. From rare disease to cancer, genomics is transforming our knowledge of biology. The transition from targeted gene sequencing, to whole exome sequencing, to whole genome sequencing has only been made possible due to rapid advancements in technologies and informatics that have plummeted the cost per base of DNA sequencing and analysis. The tools of genomics have resolved the etiology of disease for previously undiagnosable conditions, identified cancer driver gene variants, and have impacted the understanding of pathophysiology for many diseases. However, this expansion of use has also highlighted research’s current voids in knowledge. The lack of precise animal models for gene-to-function association, lack of tools for analysis of genomic structural changes, skew in populations used for genetic studies, publication biases, and the “Unknown Proteome” all contribute to voids needing filled for genomics to work in a fast-paced clinical setting. The future will hold the tools to fill in these voids, with new data sets and the continual development of new technologies allowing for expansion of genomic medicine, ushering in the days to come for precision medicine. In this review we highlight these and other points in hopes of advancing and guiding precision medicine into the future for optimal success.


JAMA ◽  
2016 ◽  
Vol 316 (13) ◽  
pp. 1357 ◽  
Author(s):  
Muin J. Khoury ◽  
Sandro Galea

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Bohu Pan ◽  
Luyao Ren ◽  
Vitor Onuchic ◽  
Meijian Guan ◽  
Rebecca Kusko ◽  
...  

Abstract Background Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. Results To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when > 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30×. Conclusions Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS.


Sign in / Sign up

Export Citation Format

Share Document