Nonlinear Observation Scheme and Dynamic Model (Extended Kalman Filter)

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Paula Cristiane Pinto Mesquita Pardal ◽  
Helio Koiti Kuga ◽  
Rodolpho Vilhena de Moraes

Herein, the purpose is to present a Kalman filter based on the sigma point unscented transformation development, aiming at real-time satellite orbit determination using GPS measurements. First, a brief review of the extended Kalman filter will be done. After, the sigma point Kalman filter will be introduced as well as the basic idea of the unscented transformation, in which this filter is based. Following, the unscented Kalman filter applied to orbit determination will be explained. Such explanation encloses formulations about the orbit determination through GPS; the dynamic model; the observation model; the unmodeled acceleration estimation; also an application of this new filter approaches on orbit determination using GPS measurements discussion.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shijie Song ◽  
Xiaolin Dai ◽  
Zhangchao Huang ◽  
Dawei Gong

Load is the main external disturbance of a parallel robot manipulator. This disturbance will cause dynamic coupling among different degrees of freedom and make heaps of model-based control methods difficult to apply. In order to compensate this disturbance, it is crucial to obtain an accurate dynamic model of load. However, in practice, the load is always uncertain and its dynamic parameters are arduous to know a priori. To cope with this problem, this paper proposes a novel and simple approach to identify the dynamic parameters of load. Firstly, the dynamic model of the parallel robot manipulator with uncertain load is established and the dynamic coupling caused by load is also analyzed. Then, according to the dynamic model, the excitation signal is designed and a weak nonlinear dynamic model is derived. Furthermore, the identification model is presented and the identification algorithm based on the extended Kalman filter is designed. Lastly, numerical simulation results, obtained using a six-degree-of-freedom Gough–Stewart parallel manipulator, demonstrate the good estimation performance of the proposed method.


2013 ◽  
Vol 694-697 ◽  
pp. 1025-1029
Author(s):  
Juh Yun An ◽  
In Nam Lee ◽  
Ki Ho Kim ◽  
Kwan Ho You

The dynamic model of a remote controlled sprayer using skid-steering method is presented as a state equation. The precision tracking of the remote controlled sprayer is difficult to realize due to sensor noise. In this paper, we propose the extended Kalman filter (EKF) algorithm to compensate for the odometric sensor noise. To demonstrate the performance of the proposed algorithm, simulations which represent a real working sprayer in a greenhouse are performed. The results show the improved localization accuracy obtained by using the proposed algorithm.


SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 172-185
Author(s):  
V.. Pandurangan ◽  
A.. Peirce ◽  
Z. R. Chen ◽  
R. G. Jeffrey

Summary A novel method to map asymmetric hydraulic-fracture propagation using tiltmeter measurements is presented. Hydraulic fracturing is primarily used for oil-and-gas well stimulation, and is also applied to precondition rock before mining. The geometry of the developing fracture is often remotely monitored with tiltmeters—instruments that are able to remotely measure the fracture-induced deformations. However, conventional analysis of tiltmeter data is limited to determining the fracture orientation and volume. The objective of this work is to detect asymmetric fracture growth during a hydraulic-fracturing treatment, which will yield height-growth information for vertical fracture growth and horizontal asymmetry for lateral fracture growth or detect low preconditioning-treatment efficiency in mining. The technique proposed here uses the extended Kalman filter (EKF) to assimilate tilt data into a hydraulic-fracture model to track the geometry of the fracture front. The EKF uses the implicit level set algorithm (ILSA) as the dynamic model to locate the boundary of the fracture by solving the coupled fluid-flow/fracture-propagation equations, and uses the Okada half-space solution as the observation model (forward model) to relate the fracture geometry to the measured tilts. The 3D fracture model uses the Okada analytical expressions for the displacements and tilts caused by piecewise constant-displacement discontinuity elements to discretize the fracture area. The proposed technique is first validated by a numerical example in which synthetic tilt data are generated by assuming a confining-stress gradient to generate asymmetric fracture growth. The inversion is carried in a two-step process in which the fracture dip and dip direction are first obtained with an elliptical fracture-forward model, and then the ILSA-EKF model is used to obtain the fracture footprint by fixing the dip and dip direction to the values obtained in the first step. Finally, the ILSA-EKF scheme is used to predict the fracture width and geometry evolution from real field data, which are compared with intersection data obtained by temperature and pressure monitoring in offset boreholes. The results show that the procedure is able to satisfactorily capture fracture growth and asymmetry even though the field data contain significant noise, the tiltmeters are relatively far from the fracture, and the dynamic model contains significant “unmodeled dynamics” such as stress anisotropy, material heterogeneity, fluid leakoff into the formation, and other physical processes that have not been explicitly accounted for in the dynamic ILSA model. However, all the physical processes that affect the tilt signal are incorporated by the EKF when the tilt measurements are used to obtain the maximum likelihood estimates of the fracture widths and geometry.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5864
Author(s):  
Qiupeng Wang ◽  
Xiaohui Sun ◽  
Chenglin Wen

This paper proposes one new design method for a higher order extended Kalman filter based on combining maximum correlation entropy with a Taylor network system to create a nonlinear random dynamic system with modeling errors and unknown statistical properties. Firstly, the transfer function and measurement function are transformed into a nonlinear random dynamic model with a polynomial form via system identification through the multidimensional Taylor network. Secondly, the higher order polynomials in the transformed state model and measurement model are defined as implicit variables of the system. At the same time, the state model and the measurement model are equivalent to the pseudolinear model based on the combination of the original variable and the hidden variable. Thirdly, higher order hidden variables are treated as additive parameters of the system; then, we establish an extended dimensional linear state model and a measurement model combining state and parameters via the previously used random dynamic model. Finally, as we only know the results of the limited sampling of the random modeling error, we use the combination of the maximum correlation estimator and the Kalman filter to establish a new higher order extended Kalman filter. The effectiveness of the new filter is verified by digital simulation.


2010 ◽  
Vol 29-32 ◽  
pp. 780-783
Author(s):  
Xiao Liang ◽  
Jun Dong Zhang ◽  
Wei Li ◽  
Lin Fang Su

In order to obtain a precise mathematical model of underwater robots, model identification based on extended kalman filter is proposed in this paper. Parameter estimation is carried out with experiment data of zigzag motion in ocean experiments, and the hydrodynamic derivatives of underwater robots are identified by using extended kalman filter, and the nonlinear dynamic model of an underwater robot is established. The simulation system based on the model is established to verify the validity. The results show the model is credible, which is very useful for the research of maneuverability and adaptive control of underwater robots.


Author(s):  
Andy Zelenak ◽  
Mitch Pryor ◽  
Kyle Schroeder

The development of control strategies that allow stiff industrial robots to operate safely in unstructured environments is a significant challenge. This paper integrates two strategies that improve safety for industrial manipulators in uncertain conditions. First, software compliance in the task space is implemented using force feedback. End-effector compliance is vital for many tasks, such as interacting with humans or manipulating uncertain payloads. Beyond compliance, a collision detection algorithm detects collisions based on joint torque deviation from a dynamic model. Collisions can be detected at any point along the manipulator via loading or impulse anomalies. Joint torque data is typically noisy, and the accuracy of the robot dynamic model is limited, so an Extended Kalman Filter (EKF) was developed to improve the torque estimates. Experiments and demonstrations were performed using a commercially available 7DOF industrial robot. The EKF improved collision detection during unplanned contact tasks, and the method described here is hardware agnostic and extensible.


Sign in / Sign up

Export Citation Format

Share Document