Tiltmeter Mapping of Measured Nonsymmetric Hydraulic-Fracture Growth in a Conglomerate/Sandstone Formation Using the Implicit Level-Set Algorithm and the Extended Kalman Filter

SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 172-185
Author(s):  
V.. Pandurangan ◽  
A.. Peirce ◽  
Z. R. Chen ◽  
R. G. Jeffrey

Summary A novel method to map asymmetric hydraulic-fracture propagation using tiltmeter measurements is presented. Hydraulic fracturing is primarily used for oil-and-gas well stimulation, and is also applied to precondition rock before mining. The geometry of the developing fracture is often remotely monitored with tiltmeters—instruments that are able to remotely measure the fracture-induced deformations. However, conventional analysis of tiltmeter data is limited to determining the fracture orientation and volume. The objective of this work is to detect asymmetric fracture growth during a hydraulic-fracturing treatment, which will yield height-growth information for vertical fracture growth and horizontal asymmetry for lateral fracture growth or detect low preconditioning-treatment efficiency in mining. The technique proposed here uses the extended Kalman filter (EKF) to assimilate tilt data into a hydraulic-fracture model to track the geometry of the fracture front. The EKF uses the implicit level set algorithm (ILSA) as the dynamic model to locate the boundary of the fracture by solving the coupled fluid-flow/fracture-propagation equations, and uses the Okada half-space solution as the observation model (forward model) to relate the fracture geometry to the measured tilts. The 3D fracture model uses the Okada analytical expressions for the displacements and tilts caused by piecewise constant-displacement discontinuity elements to discretize the fracture area. The proposed technique is first validated by a numerical example in which synthetic tilt data are generated by assuming a confining-stress gradient to generate asymmetric fracture growth. The inversion is carried in a two-step process in which the fracture dip and dip direction are first obtained with an elliptical fracture-forward model, and then the ILSA-EKF model is used to obtain the fracture footprint by fixing the dip and dip direction to the values obtained in the first step. Finally, the ILSA-EKF scheme is used to predict the fracture width and geometry evolution from real field data, which are compared with intersection data obtained by temperature and pressure monitoring in offset boreholes. The results show that the procedure is able to satisfactorily capture fracture growth and asymmetry even though the field data contain significant noise, the tiltmeters are relatively far from the fracture, and the dynamic model contains significant “unmodeled dynamics” such as stress anisotropy, material heterogeneity, fluid leakoff into the formation, and other physical processes that have not been explicitly accounted for in the dynamic ILSA model. However, all the physical processes that affect the tilt signal are incorporated by the EKF when the tilt measurements are used to obtain the maximum likelihood estimates of the fracture widths and geometry.

SPE Journal ◽  
2021 ◽  
pp. 1-19
Author(s):  
Shivam Agrawal ◽  
Jason York ◽  
John T. Foster ◽  
Mukul M. Sharma

Summary Hydraulic fracture (HF) modeling is a multiscale and multiphysics problem. It should capture various effects, including those of in-situ stresses, poroelasticity, and reservoir heterogeneities at different length scales. A peridynamics (PD)-based hydraulic fracturing simulator has been demonstrated to reproduce this physics accurately. However, accounting for such details leads to a reduction in computational speed. In this paper, we present a novel coupling of the PD-based simulator with numerically efficient finite element methods (FEMs) and finite volume methods (FVMs) to achieve a significant improvement in computational performance. Unlike classical methods, such as FEM and FVM that solve differential equations, PD uses an integral formulation to circumvent the undefined spatial derivatives at crack tips. We implemented four novel coupling schemes of our PD-based simulator with FEM and FVM: static PD region scheme, dynamic PD region scheme, adaptive mesh refinement scheme, and dynamic mesh coarsening scheme. PD equations are solved using a refined mesh close to the fracture, whereas FE/FV equations are solved using a progressively coarser mesh away from the fracture. As the fracture grows, a dynamic conversion of FE/FV cells to PD nodes and adaptive mesh refinement are incorporated. To improve the performance further, the dynamic mesh coarsening scheme additionally converts the fine PD nodes back to coarse FE/FV cells as the HF grows in length. The coupling schemes are verified against the Kristianovich-Geertsma-de Klerk (KGD) fracture propagation problem. No spurious behavior is observed near the transition between PD and FE/FV regions. In the first three coupling schemes, the computational runtime for single fracture propagation is reduced by up to 10, 20, and 50 times, respectively, compared to a pure PD model. Laboratory experiments on the interaction of an HF with a natural fracture (NF) are revisited. The model captures complex fracture behavior, such as turning in the case of low stress contrast and low angle of interaction, kinking for higher stress contrast or higher angle of interaction, and fracture crossing for near-orthogonal NFs. Moreover, several previously reported phenomena, including fracture propagation at an angle to the principal stress directions, competing fracture growth from multiple closely spaced clusters, and interaction with layers of varying mechanical properties are successfully modeled. Thus, the coupling of PD with FEM and FVM offers an innovative and fundamentally comprehensive solution to alleviate the high computational costs typically associated with the pure PD-based hydraulic fracturing simulations. At the same time, these coupling schemes retain the versatility of the nonlocal PD formulation at modeling the evolution of arbitrary material damage, commonly observed during HF propagation in complex heterogeneous reservoirs.


2021 ◽  
pp. 014459872198899
Author(s):  
Weiyong Lu ◽  
Changchun He

Directional rupture is one of the most important and most common problems related to rock breaking. The goal of directional rock breaking can be effectively achieved via multi-hole linear co-directional hydraulic fracturing. In this paper, the XSite software was utilized to verify the experimental results of multi-hole linear co-directional hydraulic fracturing., and its basic law is studied. The results indicate that the process of multi-hole linear co-directional hydraulic fracturing can be divided into four stages: water injection boost, hydraulic fracture initiation, and the unstable and stable propagation of hydraulic fracture. The stable expansion stage lasts longer and produces more microcracks than the unstable expansion stage. Due to the existence of the borehole-sealing device, the three-dimensional hydraulic fracture first initiates and expands along the axial direction in the bare borehole section, then extends along the axial direction in the non-bare hole section and finally expands along the axial direction in the rock mass without the borehole. The network formed by hydraulic fracture in rock is not a pure plane, but rather a curved spatial surface. The curved spatial surface passes through both the centre of the borehole and the axial direction relative to the borehole. Due to the boundary effect, the curved spatial surface goes toward the plane in which the maximum principal stress occurs. The local ground stress field is changed due to the initiation and propagation of hydraulic fractures. The propagation direction of the fractures between the fracturing boreholes will be deflected. A fracture propagation pressure that is greater than the minimum principle stress and a tension field that is induced in the leading edge of the fracture end, will aid to fracture intersection; as a result, the possibility of connecting the boreholes will increase.


2021 ◽  
Author(s):  
Somnath Mondal ◽  
Min Zhang ◽  
Paul Huckabee ◽  
Gustavo Ugueto ◽  
Raymond Jones ◽  
...  

Abstract This paper presents advancements in step-down-test (SDT) interpretation to better design perforation clusters. The methods provided here allow us to better estimate the pressure drop in perforations and near-wellbore tortuosity in hydraulic fracturing treatments. Data is presented from field tests from fracturing stages with different completion architectures across multiple basins including Permian Delaware, Vaca Muerta, Montney, and Utica. The sensitivity of near-wellbore pressure drops and perforation size on stimulation distribution effectiveness in plug-and-perf (PnP) treatments is modeled using a coupled hydraulic fracturing simulator. This advanced analysis of SDT data enables us to improve stimulation distribution effectiveness in multi-cluster or multiple entry completions. This analysis goes much further than the methodology presented in URTeC2019-1141 and additional examples are presented to illustrate its advantages. In a typical SDT, the injection flowrate is reduced in four or five abrupt decrements or "steps", each with a duration long enough for the rate and pressure to stabilize. The pressure-rate response is used to estimate the magnitude of perforation efficiency and near-wellbore tortuosity. In this paper, two SDTs with clean fluids were conducted in each stage - one before and another after proppant slurry was injected. SDTs were conducted in cemented single-point entry (cSPE) sleeves, which present a unique opportunity to measure only near-wellbore tortuosity using bottom-hole pressure gauge at sleeve depth, negligible perforation pressure drops, and less uncertainty in interpretation. SDTs were conducted in PnP stages in multiple unconventional basins. The results from one set of PnP stages with optic fiber distributed sensing were modeled with a hydraulic fracturing simulator that combines wellbore proppant transport, perforation size growth, near-wellbore pressure drop, and hydraulic fracture propagation. Past SDT analysis assumed that the pressure drop due to near-wellbore tortuosity is proportional to the flow rate raised to an exponent, β = 0.5, which typically overestimates perforation friction from SDTs. Theoretical derivations show that β is related to the geometry and flow type in the near-wellbore region. Results show that initial β (before proppant slurry) is typically around 0.5, but the final value of β (after proppant slurry) is approximately 1, likely due to the erosion of near-wellbore tortuosity by the proppant slurry. The new methodology incorporates the increase in β due proppant slurry erosion. Hydraulic fracturing modeling, calibrated with optic fiber data, demonstrates that the stimulation distribution effectiveness must consider the interdependence of proppant segregation in the wellbore, perforation erosion, and near-wellbore tortuosity. An improved methodology is presented to quantify the magnitude of perforation and near-wellbore tortuosity related pressure drops before and after pumping of proppant slurry in typical PnP hydraulic fracture stimulations. The workflow presented here shows how the uncertainties in the magnitude of near-wellbore complexity and perforation size, along with uncertainties in hydraulic fracture propagation parameters, can be incorporated in perforation cluster design.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shenglong Liu ◽  
Bingxiang Huang ◽  
Weiyong Lu ◽  
Haoze Li ◽  
Ding Li ◽  
...  

Hydraulic fracturing can improve the permeability of composite thin coal seam. Recently, characterizing hydraulic fracture (HF) propagation inside the coal seam and evaluating the permeability enhancement with HF extension remain challenging and crucial. In this work, based on the geological characteristics of the coal seam in a coal mine of the southwest China, the RFPA2D-Flow software is employed to simulate the HF propagation and its permeability-increasing effect in the composite thin coal seam, and a couple of outcomes were obtained. (1) Continuous propagation of the hydraulic microcrack-band is the prominent characteristic of HF propagation. With the increment of the injection-water pressure, HF generation in the composite thin coal seam can be divided into three stages: stress accumulation, stable fracture propagation, and unstable fracture propagation. (2) The hydraulic microcrack-band propagates continuously driven by the fluid-injection pressure. The microcrack-band not only cracks the coal seam but also fractures the gangue sandwiched between the coal seams. (3) The permeability in the composite thin coal seam increases significantly with the propagation of hydraulic microcrack-band. The permeability increases by 1~2 magnitudes after hydraulic fracturing. This study provides references to the field applications of hydraulic fracturing in the composite thin coal seam, such as optimizing hydraulic fracturing parameters, improving gas drainage, and safe-efficient mining.


2019 ◽  
Vol 86 (12) ◽  
Author(s):  
Alena O. Bessmertnykh ◽  
Egor V. Dontsov

Abstract Hydraulic fracturing is an industrial process often applied to enhance oil and gas recovery. Under this process, fractures are generated by the injection of highly pressurized fluids, which often exhibit shear-thinning rheology and yield stress. The global fracture propagation is influenced by various processes occurring near the fracture tip. To gain an insight into fracture propagation, the problem of a semi-infinite hydraulic fracture propagating in a permeable linear elastic rock is solved. To investigate the effect of fluid yield stress, we focus on a fracture driven by Herschel–Bulkley fluid. The mathematical model consists of the elasticity equation, the lubrication equation, and the propagation criterion for the semi-infinite plane strain fracture to obtain the fracture opening. The non-linear system of governing equations is represented in the non-singular form and solved numerically using Newton’s method. The solution is influenced by the competing processes related to rock toughness, fluid properties, and leak-off. The effects of these phenomena prevail at different length scales, and the corresponding limits can be described via analytical solutions. For a Herschel-Bulkley fluid, an additional limiting solution related to the fluid yield stress is obtained, and the regions of the dominance of limiting solutions affected by the yield stress are investigated. Finally, a faster approximate solution for the problem is proposed and its accuracy against a numerical solution is evaluated. The obtained result can be applied in hydraulic fracturing simulators to account for the effect of Herschel–Bulkley fluid rheology on the near-tip region.


Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 28 ◽  
Author(s):  
Jianxiong Li ◽  
Shiming Dong ◽  
Wen Hua ◽  
Xiaolong Li ◽  
Xin Pan

Complex propagation patterns of hydraulic fractures often play important roles in naturally fractured formations due to complex mechanisms. Therefore, understanding propagation patterns and the geometry of fractures is essential for hydraulic fracturing design. In this work, a seepage–stress–damage coupled model based on the finite pore pressure cohesive zone (PPCZ) method was developed to investigate hydraulic fracture propagation behavior in a naturally fractured reservoir. Compared with the traditional finite element method, the coupled model with global insertion cohesive elements realizes arbitrary propagation of fluid-driven fractures. Numerical simulations of multiple-cluster hydraulic fracturing were carried out to investigate the sensitivities of a multitude of parameters. The results reveal that stress interference from multiple-clusters is responsible for serious suppression and diversion of the fracture network. A lower stress difference benefits the fracture network and helps open natural fractures. By comparing the mechanism of fluid injection, the maximal fracture network can be achieved with various injection rates and viscosities at different fracturing stages. Cluster parameters, including the number of clusters and their spacing, were optimal, satisfying the requirement of creating a large fracture network. These results offer new insights into the propagation pattern of fluid driven fractures and should act as a guide for multiple-cluster hydraulic fracturing, which can help increase the hydraulic fracture volume in naturally fractured reservoirs.


Sign in / Sign up

Export Citation Format

Share Document