scholarly journals Autophagy inhibits cancer stemness in triple‐negative breast cancer via miR‐181a‐mediated regulation of ATG5 and/or ATG2B

2022 ◽  
Author(s):  
Jee Won Park ◽  
Yesol Kim ◽  
Soo‐been Lee ◽  
Chae Won Oh ◽  
Eun Ji Lee ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Meiou Dai ◽  
Chenjing Zhang ◽  
Ayad Ali ◽  
Xinyuan Hong ◽  
Jun Tian ◽  
...  

2019 ◽  
Author(s):  
Valery Adorno-Cruz ◽  
Andrew D. Hoffmann ◽  
Xia Liu ◽  
Brian Wray ◽  
Ruth A. Keri ◽  
...  

AbstractAccumulating evidence demonstrates that cancer stemness is essential for both tumor development and progression, regulated by multi-layer factors at genetic, epigenetic and micro-environmental levels. However, how to target stemness-driven plasticity and eliminate metastasis remains one of the biggest challenges in the clinic. We aim to identify novel molecular mechanisms underlying stemness of triple negative breast cancer (TNBC) which frequently metastasizes to the visceral organs but lacks targeted therapies. Following our previous discovery of miR-206 as an epigenetic suppressor of tumorigenesis and metastasis, we now report that the integrin receptor CD49b-encodingITGA2is an oncogenic target of miR-206 in TNBC.ITGA2knockdown abolished cancer stemness (mammosphere formation, pluripotency marker expression, and FAK phosphorylation), inhibited cell cycling, compromised migration and invasion, and thereby decreasing lung metastasis of TNBC. RNA sequencing analyses of breast cancer cells revealed thatITGA2knockdown inhibits gene expression essential for both classical integrin-regulated pathways (cell cycle, wounding response, protein kinase, etc) and newly identified pathways such as lipid metabolism. Notably,ACLY-encoded ATP citrate lyase is one of the top targets in CD49b-regulated lipid metabolism andCCND1-encoded Cyclin D1 represents regulation of cell cycle and many other pathways. ACLY, known to catalyze the formation of cytosolic acetyl-CoA for fatty acid biosynthesis, is indispensable for cancer stemness. Overexpression ofCCND1rescues the phenotype ofITGA2knockdown-induced cell cycle arrest. High expression levels of theITGA2/ACLY/CCND1axis are correlated with an unfavorable relapse-free survival of patients with high grade breast cancer, in both basal-like and other subtypes. This study identifiesITGA2as a potential therapeutic target of TNBC stemness and metastasis.


2016 ◽  
Vol 34 (15_suppl) ◽  
pp. 1094-1094 ◽  
Author(s):  
Carlos Becerra ◽  
Fadi S. Braiteh ◽  
Alexander I. Spira ◽  
Adrian Langleben ◽  
Lawrence C. Panasci ◽  
...  

2020 ◽  
Vol Volume 13 ◽  
pp. 2843-2854
Author(s):  
Weiyu Ge ◽  
Mengyi Jiang ◽  
Fengchun Zhang ◽  
Yue Ma ◽  
Hongxia Wang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Alishba Maryam ◽  
Y. Rebecca Chin

ANLN is frequently upregulated in triple-negative breast cancer (TNBC) and its high expression in tumors are significantly associated with poor survival and recurrence, thereby it has been proposed to function as a prognostic marker for breast cancer. However, the specific function and molecular mechanisms by which ANLN promotes TNBC tumorigenesis remain elusive. Using multiomic profiling, we recently uncovered ANLN as a TNBC-specific gene driven by super-enhancer. Here, by Crispr/Cas9 editing, we showed that knockout of ANLN inhibits spheroid growth of TNBC. Interestingly, its effect on cell proliferation in 2D cultures is minimal. ANLN depletion inhibits mammosphere formation and clonogenicity potently, suggesting its important function in regulating cancer stem cells (CSCs). We screened a panel of stem cell-related genes and uncovered several CSC genes regulated by ANLN. We further identify TWIST1 and BMP2 as essential genes that mediate ANLN’s function in stemness but not spheroid growth. These findings may contribute to search for effective targeted therapies to treat TNBC.


Oncogene ◽  
2022 ◽  
Author(s):  
Wei-Chieh Huang ◽  
Jia-Hau Yen ◽  
Yu-Wen Sung ◽  
Shiao-Lin Tung ◽  
Po-Ming Chen ◽  
...  

AbstractTriple negative breast cancer (TNBC) possesses poor prognosis mainly due to lack of effective endocrine or targeted therapies, aggressive nature and high rate of chemoresistance. Cancer stem cells (CSCs) are considered to play critical roles in cancer recurrence and chemoresistance. THEMIS2 was identified as the sole common elevated gene in three triple negative breast cancer (TNBC) and two ovarian CSC lines. We discovered an intrinsic signaling scaffold function of THEMIS2, which acts as a novel regulator of cancer stemness in promoting multiple cancer stemness properties including sphere formation, stemness markers expression, chemoresistance and tumorigenicity with low numbers of cancer cells implantation. For the first time, we demonstrated that THEMIS2 specifically enhanced MET activating phosphorylation by suppressing the association of protein-tyrosine phosphatases 1B (PTP1B) with p-MET and MET, which accounted mainly for THEMIS2-mediated effect on cancer stemness and chemoresistance. Increased THEMIS2 expression was associated with poor survival in TNBC patients and in patients from our breast cancer cohort. We found that non-cytotoxic dosages of cryptotanshinone (CPT) could potently inhibit cancer stemness, chemoresistance and tumorigenicity by suppressing expression of THEMIS2. Notably, stable overexpression of THEMIS2 is associated with enhanced sensitivity toward Capmatinib and CPT treatment. Expression levels of THEMIS2 and p-MET protein were positively correlated in the 465 breast cancer specimens. Our study revealed the novel oncogenic role of THEMIS2 and its underlying mechanism via suppressing PTP1B association with MET and thus leading to its activation. Our findings suggest that THEMIS2 could be a biomarker for MET targeted therapy and also provide a potential clinical application using low dosages of CPT for treatment of THEMIS2 positive TNBC.


Sign in / Sign up

Export Citation Format

Share Document