scholarly journals Novel function of THEMIS2 in the enhancement of cancer stemness and chemoresistance by releasing PTP1B from MET

Oncogene ◽  
2022 ◽  
Author(s):  
Wei-Chieh Huang ◽  
Jia-Hau Yen ◽  
Yu-Wen Sung ◽  
Shiao-Lin Tung ◽  
Po-Ming Chen ◽  
...  

AbstractTriple negative breast cancer (TNBC) possesses poor prognosis mainly due to lack of effective endocrine or targeted therapies, aggressive nature and high rate of chemoresistance. Cancer stem cells (CSCs) are considered to play critical roles in cancer recurrence and chemoresistance. THEMIS2 was identified as the sole common elevated gene in three triple negative breast cancer (TNBC) and two ovarian CSC lines. We discovered an intrinsic signaling scaffold function of THEMIS2, which acts as a novel regulator of cancer stemness in promoting multiple cancer stemness properties including sphere formation, stemness markers expression, chemoresistance and tumorigenicity with low numbers of cancer cells implantation. For the first time, we demonstrated that THEMIS2 specifically enhanced MET activating phosphorylation by suppressing the association of protein-tyrosine phosphatases 1B (PTP1B) with p-MET and MET, which accounted mainly for THEMIS2-mediated effect on cancer stemness and chemoresistance. Increased THEMIS2 expression was associated with poor survival in TNBC patients and in patients from our breast cancer cohort. We found that non-cytotoxic dosages of cryptotanshinone (CPT) could potently inhibit cancer stemness, chemoresistance and tumorigenicity by suppressing expression of THEMIS2. Notably, stable overexpression of THEMIS2 is associated with enhanced sensitivity toward Capmatinib and CPT treatment. Expression levels of THEMIS2 and p-MET protein were positively correlated in the 465 breast cancer specimens. Our study revealed the novel oncogenic role of THEMIS2 and its underlying mechanism via suppressing PTP1B association with MET and thus leading to its activation. Our findings suggest that THEMIS2 could be a biomarker for MET targeted therapy and also provide a potential clinical application using low dosages of CPT for treatment of THEMIS2 positive TNBC.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bowen Gao ◽  
Jiongyu Chen ◽  
Bingchen Han ◽  
Xinfeng Zhang ◽  
Jijun Hao ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is associated with a high rate of early recurrence and distant metastasis, frequent development of therapeutic resistance, and a poor prognosis. There is a lack of targeted therapies for this aggressive subtype of breast cancer. Identifying novel effective treatment modalities for TNBC remains an urgent and unmet clinical need. In this study, we investigated the anti-cancer effect of triptonide, a natural compound derived from the traditional Chinese medicinal herb Tripterygium wilfordii Hook F, in TNBC. We found that triptonide inhibits human TNBC cell growth in vitro and growth of TNBC xenograft mammary tumors. It induces apoptosis and suppresses stem-like properties as indicated by reduced mammosphere formation and aldehyde dehydrogenase activity in TNBC cells. We show that triptonide downregulates multiple cancer stem cell-associated genes but upregulates SNAI1 gene expression. In support of SNAI1 induction as a negative feedback response to triptonide treatment, in vitro-derived triptonide-resistant HCC1806 cells display a markedly higher expression of SNAI1 compared with parental cells. Mechanistically, the increase of SNAI1 expression is mediated by the activation of JNK signaling, but not by ERK and AKT, two well-established SNAI1 regulators. Furthermore, knockdown of SNAI1 in the triptonide-resistant HCC1806 cells increases sensitivity to triptonide and reduces mammosphere formation. These results indicate that triptonide holds promise as a novel anti-tumor agent for TNBC treatment. Our study also reveals a SNAI1-associated feedback mechanism which may lead to acquired resistance to triptonide.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


2020 ◽  
Vol 106 (1_suppl) ◽  
pp. 20-20
Author(s):  
NS Tolba ◽  
AS Alsedfy ◽  
SW Skandar ◽  
YM El-Kerm

Introduction: Triple negative breast cancer (TNBC) is defined by the absence of ER expression, PR expression and HER2 amplification. No targeted treatment is available for TNBC and chemotherapy remains the best therapeutic option. However, in the case of recurrence or chemo-resistance, therapeutic options are very limited. TNBC presents a high rate of proliferation and is highly aggressive having low survival rate. As the complexity of this disease is being simplified over time, new targets are also being discovered for the treatment of this disease. Therefore, there is still need for new biomarkers, which would serve for targeted treatment. Transgelin was proposed as a new potential cancer biomarker. Altered expression of Transgelin has been described in a wide range of cancers, often with contradictory results. The aim of the study was to compare Transgelin expression across molecular subtypes of breast cancer, to identify if it can be used as a future molecular targeted protein for TNBC. Material and Methods: Transgelin immunohistochemistry was applied on 60 retrospectively collected paraffin blocks of patients presenting with invasive breast carcinoma (NST) having different molecular subtypes. Blocks were collected between 2015 and 2016 from Pathology department, Medical Research Institute, Egypt. Her2 equivocal cases were excluded from the study. Results: Transgelin expression was positive in 23 cases and negative in 37 cases. There was a statistically significant difference between (Transgelin +) and (Transgelin -) cases being highly expressed in TNBC in comparison to other molecular subtypes. It was also highly expressed in tumors with large size, high grade, positive lymph-vascular invasion status & lymph node metastasis. There was no statistically significant difference between (Transgelin+) and (Transgelin-) as regards age and Her2 status. Conclusions: Transgelin is an aggressive biomarker differentially expressed among the molecular breast cancer subtypes with high expression in TNBC. Transgelin may provide a potential target for future treatment of TNBC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Elisa Martino ◽  
Daniela Cristina Vuoso ◽  
Stefania D’Angelo ◽  
Luigi Mele ◽  
Nunzia D’Onofrio ◽  
...  

Abstract Polyphenols represent the most studied class of nutraceuticals that can be therapeutics for a large spectrum of diseases, including cancer. In this study, we investigated for the first time the antitumor activities of polyphenol extract from Annurca apple (APE) in MDA-MB-231 triple negative breast cancer cells, and we explored the underlying mechanisms. APE selectively inhibited MDA-MB-231 cell viability and caused G2/M phase arrest associated with p27 and phospho-cdc25C upregulation and with p21 downregulation. APE promoted reactive oxygen species (ROS) generation in MDA-MB-231 cells while it acted as antioxidant in non-tumorigenic MCF10A cells. We demonstrated that ROS generation represented the primary step of APE antitumor activity as pretreatment with antioxidant N-acetylcysteine (NAC) prevented APE-induced G2/M phase arrest, apoptosis, and autophagy. APE downregulated Dusp-1 and induced a significant increase in JNK/c-Jun phosphorylation that were both prevented by NAC. Moreover, downregulation of JNK by its specific inhibitor SP600125 significantly diminished the anticancer activity of APE indicating that ROS generation and sustained JNK activation represented the main underlying mechanism of APE-induced cell death. APE also inhibited AKT activation and downregulated several oncoproteins, such as NF-kB, c-myc, and β-catenin. In light of these results, APE may be an attractive candidate for drug development against triple negative breast cancer.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Meiou Dai ◽  
Chenjing Zhang ◽  
Ayad Ali ◽  
Xinyuan Hong ◽  
Jun Tian ◽  
...  

2010 ◽  
Vol 28 (15_suppl) ◽  
pp. 6114-6114
Author(s):  
L. Zhao ◽  
B. S. Seal ◽  
B. A. Feinberg ◽  
J. W. Gilmore ◽  
S. Haislip ◽  
...  

2019 ◽  
Author(s):  
Valery Adorno-Cruz ◽  
Andrew D. Hoffmann ◽  
Xia Liu ◽  
Brian Wray ◽  
Ruth A. Keri ◽  
...  

AbstractAccumulating evidence demonstrates that cancer stemness is essential for both tumor development and progression, regulated by multi-layer factors at genetic, epigenetic and micro-environmental levels. However, how to target stemness-driven plasticity and eliminate metastasis remains one of the biggest challenges in the clinic. We aim to identify novel molecular mechanisms underlying stemness of triple negative breast cancer (TNBC) which frequently metastasizes to the visceral organs but lacks targeted therapies. Following our previous discovery of miR-206 as an epigenetic suppressor of tumorigenesis and metastasis, we now report that the integrin receptor CD49b-encodingITGA2is an oncogenic target of miR-206 in TNBC.ITGA2knockdown abolished cancer stemness (mammosphere formation, pluripotency marker expression, and FAK phosphorylation), inhibited cell cycling, compromised migration and invasion, and thereby decreasing lung metastasis of TNBC. RNA sequencing analyses of breast cancer cells revealed thatITGA2knockdown inhibits gene expression essential for both classical integrin-regulated pathways (cell cycle, wounding response, protein kinase, etc) and newly identified pathways such as lipid metabolism. Notably,ACLY-encoded ATP citrate lyase is one of the top targets in CD49b-regulated lipid metabolism andCCND1-encoded Cyclin D1 represents regulation of cell cycle and many other pathways. ACLY, known to catalyze the formation of cytosolic acetyl-CoA for fatty acid biosynthesis, is indispensable for cancer stemness. Overexpression ofCCND1rescues the phenotype ofITGA2knockdown-induced cell cycle arrest. High expression levels of theITGA2/ACLY/CCND1axis are correlated with an unfavorable relapse-free survival of patients with high grade breast cancer, in both basal-like and other subtypes. This study identifiesITGA2as a potential therapeutic target of TNBC stemness and metastasis.


2020 ◽  
Vol 10 (4) ◽  
pp. 277
Author(s):  
Ioana-Ecaterina Pralea ◽  
Radu-Cristian Moldovan ◽  
Adrian-Bogdan Țigu ◽  
Corina Ionescu ◽  
Cristina-Adela Iuga

Triple-negative breast cancer (TNBC) represents an unmet medical need due to a high rate of metastatic occurrence and poor overall survival, pathology aggressiveness, heterogeneous clinical behavior and limited cytotoxic chemotherapy options available because of the absence of targetable receptors. The current standard of care in TNBC is represented by chemotherapy and surgery associated with low overall survival and high relapse rates. Hopes of overcoming current limited and unspecific approaches of TNBC therapy lie in studying the metabolic rewiring of these types of breast cancer, thus understanding the mechanisms involved in the occurrence and progression of the disease. Due to its heterogeneity, a clinically relevant sub-classification of this type of breast cancer based on biomarker panels is greatly needed in order to guide treatment decisions. Mass spectrometry-based omics may provide very useful tools to address the current needs of targetable biomarker discovery and validation. The present review aims to provide a comprehensive view of the current clinical diagnosis and therapy of TNBC highlighting the need for a new approach. Therefore, this paper offers a detailed mass spectrometry-based snapshot of TNBC metabolic adjustment, emphasizing a complex network of variables governing the diverse and aggressive clinical behavior of TNBC.


Sign in / Sign up

Export Citation Format

Share Document