scholarly journals Quasi-decadal signals of Sahel rainfall and West African monsoon since the mid-twentieth century

2013 ◽  
Vol 118 (22) ◽  
pp. 12,587-12,599 ◽  
Author(s):  
Bastien Dieppois ◽  
Arona Diedhiou ◽  
Alain Durand ◽  
Matthieu Fournier ◽  
Nicolas Massei ◽  
...  
2006 ◽  
Vol 19 (15) ◽  
pp. 3681-3703 ◽  
Author(s):  
Kerry H. Cook ◽  
Edward K. Vizy

Abstract The ability of coupled GCMs to correctly simulate the climatology and a prominent mode of variability of the West African monsoon is evaluated, and the results are used to make informed decisions about which models may be producing more reliable projections of future climate in this region. The integrations were made available by the Program for Climate Model Diagnosis and Intercomparison for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The evaluation emphasizes the circulation characteristics that support the precipitation climatology, and the physical processes of a “rainfall dipole” variability mode that is often associated with dry conditions in the Sahel when SSTs in the Gulf of Guinea are anomalously warm. Based on the quality of their twentieth-century simulations over West Africa in summer, three GCMs are chosen for analysis of the twenty-first century integrations under various assumptions about future greenhouse gas increases. Each of these models behaves differently in the twenty-first-century simulations. One model simulates severe drying across the Sahel in the later part of the twenty-first century, while another projects quite wet conditions throughout the twenty-first century. In the third model, warming in the Gulf of Guinea leads to more modest drying in the Sahel due to a doubling of the number of anomalously dry years by the end of the century. An evaluation of the physical processes that cause these climate changes, in the context of the understanding about how the system works in the twentieth century, suggests that the third model provides the most reasonable projection of the twenty-first-century climate.


2019 ◽  
Vol 46 (23) ◽  
pp. 14021-14029 ◽  
Author(s):  
P. Braconnot ◽  
J. Crétat ◽  
O. Marti ◽  
Y. Balkanski ◽  
A. Caubel ◽  
...  

2016 ◽  
Vol 144 (4) ◽  
pp. 1571-1589 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Caroline L. Bain ◽  
Peter Knippertz ◽  
John H. Marsham ◽  
Douglas J. Parker

Abstract Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.


2021 ◽  
Author(s):  
Christopher Johannes Diekmann ◽  
Matthias Schneider ◽  
Peter Knippertz ◽  
Andries Jan de Vries ◽  
Stephan Pfahl ◽  
...  

2008 ◽  
Vol 96 (1-2) ◽  
pp. 179-189 ◽  
Author(s):  
G. A. Dalu ◽  
M. Gaetani ◽  
M. Baldi

2021 ◽  
Vol 17 (4) ◽  
pp. 1665-1684
Author(s):  
Leonore Jungandreas ◽  
Cathy Hohenegger ◽  
Martin Claussen

Abstract. Global climate models experience difficulties in simulating the northward extension of the monsoonal precipitation over north Africa during the mid-Holocene as revealed by proxy data. A common feature of these models is that they usually operate on grids that are too coarse to explicitly resolve convection, but convection is the most essential mechanism leading to precipitation in the West African Monsoon region. Here, we investigate how the representation of tropical deep convection in the ICOsahedral Nonhydrostatic (ICON) climate model affects the meridional distribution of monsoonal precipitation during the mid-Holocene by comparing regional simulations of the summer monsoon season (July to September; JAS) with parameterized and explicitly resolved convection. In the explicitly resolved convection simulation, the more localized nature of precipitation and the absence of permanent light precipitation as compared to the parameterized convection simulation is closer to expectations. However, in the JAS mean, the parameterized convection simulation produces more precipitation and extends further north than the explicitly resolved convection simulation, especially between 12 and 17∘ N. The higher precipitation rates in the parameterized convection simulation are consistent with a stronger monsoonal circulation over land. Furthermore, the atmosphere in the parameterized convection simulation is less stably stratified and notably moister. The differences in atmospheric water vapor are the result of substantial differences in the probability distribution function of precipitation and its resulting interactions with the land surface. The parametrization of convection produces light and large-scale precipitation, keeping the soils moist and supporting the development of convection. In contrast, less frequent but locally intense precipitation events lead to high amounts of runoff in the explicitly resolved convection simulations. The stronger runoff inhibits the moistening of the soil during the monsoon season and limits the amount of water available to evaporation in the explicitly resolved convection simulation.


Sign in / Sign up

Export Citation Format

Share Document