scholarly journals Impact of Multiscale Variability on Last 6,000 Years Indian and West African Monsoon Rain

2019 ◽  
Vol 46 (23) ◽  
pp. 14021-14029 ◽  
Author(s):  
P. Braconnot ◽  
J. Crétat ◽  
O. Marti ◽  
Y. Balkanski ◽  
A. Caubel ◽  
...  
2016 ◽  
Vol 144 (4) ◽  
pp. 1571-1589 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Caroline L. Bain ◽  
Peter Knippertz ◽  
John H. Marsham ◽  
Douglas J. Parker

Abstract Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.


2021 ◽  
Author(s):  
Christopher Johannes Diekmann ◽  
Matthias Schneider ◽  
Peter Knippertz ◽  
Andries Jan de Vries ◽  
Stephan Pfahl ◽  
...  

2008 ◽  
Vol 96 (1-2) ◽  
pp. 179-189 ◽  
Author(s):  
G. A. Dalu ◽  
M. Gaetani ◽  
M. Baldi

2021 ◽  
Vol 17 (4) ◽  
pp. 1665-1684
Author(s):  
Leonore Jungandreas ◽  
Cathy Hohenegger ◽  
Martin Claussen

Abstract. Global climate models experience difficulties in simulating the northward extension of the monsoonal precipitation over north Africa during the mid-Holocene as revealed by proxy data. A common feature of these models is that they usually operate on grids that are too coarse to explicitly resolve convection, but convection is the most essential mechanism leading to precipitation in the West African Monsoon region. Here, we investigate how the representation of tropical deep convection in the ICOsahedral Nonhydrostatic (ICON) climate model affects the meridional distribution of monsoonal precipitation during the mid-Holocene by comparing regional simulations of the summer monsoon season (July to September; JAS) with parameterized and explicitly resolved convection. In the explicitly resolved convection simulation, the more localized nature of precipitation and the absence of permanent light precipitation as compared to the parameterized convection simulation is closer to expectations. However, in the JAS mean, the parameterized convection simulation produces more precipitation and extends further north than the explicitly resolved convection simulation, especially between 12 and 17∘ N. The higher precipitation rates in the parameterized convection simulation are consistent with a stronger monsoonal circulation over land. Furthermore, the atmosphere in the parameterized convection simulation is less stably stratified and notably moister. The differences in atmospheric water vapor are the result of substantial differences in the probability distribution function of precipitation and its resulting interactions with the land surface. The parametrization of convection produces light and large-scale precipitation, keeping the soils moist and supporting the development of convection. In contrast, less frequent but locally intense precipitation events lead to high amounts of runoff in the explicitly resolved convection simulations. The stronger runoff inhibits the moistening of the soil during the monsoon season and limits the amount of water available to evaporation in the explicitly resolved convection simulation.


Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Ibrahima Diba ◽  
Moctar Camara ◽  
Arona Diedhiou

This study investigates the changes in West African monsoon features during warm years using the Regional Climate Model version 4.5 (RegCM4.5). The analysis uses 30 years of datasets of rainfall, surface temperature and wind parameters (from 1980 to 2009). We performed a simulation at a spatial resolution of 50 km with the RegCM4.5 model driven by ERA-Interim reanalysis. The rainfall amount is weaker over the Sahel (western and central) and the Guinea region for the warmest years compared to the coldest ones. The analysis of heat fluxes show that the sensible (latent) heat flux is stronger (weaker) during the warmest (coldest) years. When considering the rainfall events, there is a decrease of the number of rainy days over the Guinea Coast (in the South of Cote d’Ivoire, of Ghana and of Benin) and the western and eastern Sahel during warm years. The maximum length of consecutive wet days decreases over the western and eastern Sahel, while the consecutive dry days increase mainly over the Sahel band during the warm years. The percentage of very warm days and warm nights increase mainly over the Sahel domain and the Guinea region. The model also simulates an increase of the warm spell duration index in the whole Sahel domain and over the Guinea Coast in warm years. The analysis of the wind dynamic exhibits during warm years a weakening of the monsoon flow in the lower levels, a strengthening in the magnitude of the African Easterly Jet (AEJ) in the mid-troposphere and a slight increase of the Tropical Easterly Jet (TEJ) in the upper levels of the atmosphere during warm years.


2020 ◽  
Vol 55 (11-12) ◽  
pp. 3413-3429
Author(s):  
Jing Chai ◽  
Fei Liu ◽  
Chen Xing ◽  
Bin Wang ◽  
Chaochao Gao ◽  
...  

Abstract After each of the 1963 Agung, 1982 El Chichón, and 1991 Pinatubo eruptions, an El Niño was observed. The increased likelihood of an El Niño after a tropical eruption has also been found in long-term reconstructed proxy data. Through examining simulations over the last millennium by 11 different models, we show that a tropical volcano eruption can robustly excite a western-to-central equatorial Pacific (WCEP) westerly anomaly at 850 hPa in eight out of the 11 models; such a westerly anomaly is favorable for El Niño development. Under the volcanic forcing, there are significant extratropical continent surface cooling and tropical drying with negative precipitation anomalies over the South–South East Asia (SSEA), West African monsoon, and Intertropical Convergence Zone (ITCZ) regions. This common precipitation suppression response occurs in most of the models. Sensitivity experiments show that a WCEP westerly anomaly can be excited by the tropical land cooling, especially the SSEA cooling induced precipitation suppression rather than by the extratropical land surface cooling. Theoretical results show that a WCEP westerly anomaly is excited due to a Gill response to reduced precipitation over the SSEA and West African monsoon regions; and the SSEA contributes more than the West African monsoon does. The ITCZ weakening, however, excites an easterly wind anomaly. The models with more sensitive convective feedback tend to simulate an El Niño more easily, while a failed simulation of an El Niño after a robust westerly anomaly in some models calls for further studies on these models’ delayed responses to radiative forcing induced by volcano eruptions.


Sign in / Sign up

Export Citation Format

Share Document