scholarly journals Late summer net community production in the central Arctic Ocean using multiple approaches

2014 ◽  
Vol 28 (10) ◽  
pp. 1129-1148 ◽  
Author(s):  
Adam Ulfsbo ◽  
Nicolas Cassar ◽  
Meri Korhonen ◽  
Steven Heuven ◽  
Mario Hoppema ◽  
...  
2013 ◽  
Vol 10 (3) ◽  
pp. 1451-1469 ◽  
Author(s):  
R. Vaquer-Sunyer ◽  
C. M. Duarte ◽  
J. Holding ◽  
A. Regaudie-de-Gioux ◽  
L. S. García-Corral ◽  
...  

Abstract. The metabolism of the Arctic Ocean is marked by extremely pronounced seasonality and spatial heterogeneity associated with light conditions, ice cover, water masses and nutrient availability. Here we report the marine planktonic metabolic rates (net community production, gross primary production and community respiration) along three different seasons of the year, for a total of eight cruises along the western sector of the European Arctic (Fram Strait – Svalbard region) in the Arctic Ocean margin: one at the end of 2006 (fall/winter), two in 2007 (early spring and summer), two in 2008 (early spring and summer), one in 2009 (late spring–early summer), one in 2010 (spring) and one in 2011 (spring). The results show that the metabolism of the western sector of the European Arctic varies throughout the year, depending mostly on the stage of bloom and water temperature. Here we report metabolic rates for the different periods, including the spring bloom, summer and the dark period, increasing considerably the empirical basis of metabolic rates in the Arctic Ocean, and especially in the European Arctic corridor. Additionally, a rough annual metabolic estimate for this area of the Arctic Ocean was calculated, resulting in a net community production of 108 g C m−2 yr−1.


Author(s):  
Zhangxian Ouyang ◽  
Di Qi ◽  
Wenli Zhong ◽  
Liqi Chen ◽  
Zhongyong Gao ◽  
...  

2009 ◽  
Vol 114 (D13) ◽  
Author(s):  
C. E. Birch ◽  
I. M. Brooks ◽  
M. Tjernström ◽  
S. F. Milton ◽  
P. Earnshaw ◽  
...  

2012 ◽  
Vol 9 (6) ◽  
pp. 7701-7742 ◽  
Author(s):  
R. Vaquer-Sunyer ◽  
C. M. Duarte ◽  
J. Holding ◽  
A. Regaudie-de-Gioux ◽  
L. S. García-Corral ◽  
...  

Abstract. The metabolism of the Arctic Ocean is marked by extreme pronounced seasonality and spatial heterogeneity associated with light conditions, ice cover, water masses and nutrient availability. Here we report the marine planktonic metabolic rates (Net Community Production, Gross Primary Production and Community Respiration) along three different seasons of the year for a total of eight cruises along the western sector of the European Arctic (Fram Strait – Svalbard region) in the Arctic Ocean margin: one at the end of 2006 (fall/winter), two in 2007 (early spring and summer), two in 2008 (early spring and summer), one in 2009 (late spring–early summer) and one in 2010 (spring). The results show that metabolisms of the western sector of the European Arctic varies throughout the year, depending mostly on the stage of bloom, which is mainly determined by availability of light and nutrients. Here we report metabolic rates for the different periods, including the spring bloom, summer and the dark period, increasing considerably the empirical basis on metabolic rates in the Artic Ocean, and especially in the European Arctic corridor. We also report a rough annual metabolic balance for this area of the Arctic Ocean, resulting in a Net Community Production of 108 g C m−2 yr−1.


2017 ◽  
Vol 31 (3) ◽  
pp. 473-491 ◽  
Author(s):  
Hans B. DeJong ◽  
Robert B. Dunbar ◽  
David A. Koweek ◽  
David A. Mucciarone ◽  
Sarah K. Bercovici ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Robert W. Izett ◽  
Roberta C. Hamme ◽  
Craig McNeil ◽  
Cara C. M. Manning ◽  
Annie Bourbonnais ◽  
...  

We compared field measurements of the biological O2 saturation anomalies, ΔO2/Ar and ΔO2/N2, from simultaneous oceanographic deployments of a membrane inlet mass spectrometer and optode/gas tension device (GTD). Data from the Subarctic Northeast Pacific and Canadian Arctic Ocean were used to evaluate ΔO2/N2 as an alternative to ΔO2/Ar for estimates of mixed layer net community production (NCP). We observed strong spatial coherence between ΔO2/Ar and ΔO2/N2, with small offsets resulting from differences in the solubility properties of Ar and N2 and their sensitivity to vertical mixing fluxes. Larger offsets between the two tracers were observed across hydrographic fronts and under elevated sea states, resulting from the differential time-response of the optode and GTD, and from bubble dissolution in the ship’s seawater lines. We used a simple numerical framework to correct for physical sources of divergence between N2 and Ar, deriving the tracer ΔO2/N2′. Over most of our survey regions, ΔO2/N2′ provided a better analog for ΔO2/Ar, and thus more accurate NCP estimates than ΔO2/N2. However, in coastal Arctic waters, ΔO2/N2 and ΔO2/N2′ performed equally well as NCP tracers. On average, mixed layer NCP estimated from ΔO2/Ar and ΔO2/N2′ agreed to within ∼2 mmol O2 m–2 d–1, with offsets typically smaller than other errors in NCP calculations. Our results demonstrate a significant potential to derive NCP from underway O2/N2 measurements across various oceanic regions. Optode/GTD systems could replace mass spectrometers for autonomous NCP derivation under many oceanographic conditions, thereby presenting opportunities to significantly expand global NCP coverage from various underway platforms.


Sign in / Sign up

Export Citation Format

Share Document